Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study first to directly measure body temperatures of extinct species

25.05.2010
A new study by researchers from five institutions including the University of Florida introduces the first method to directly measure body temperatures of extinct vertebrates and help reconstruct temperatures of ancient environments.

The study, appearing in this week’s online early edition of Proceedings of the National Academy of Sciences, describes how scientists could use carbon and oxygen isotopes from fossils to more accurately determine whether extinct animals were warm-blooded or cold-blooded and better estimate temperature ranges during the times these animals lived.

“Without a time machine, it has previously been impossible to directly take the temperature of extinct animals such as dinosaurs or megalodon sharks,” said study co-author Richard Hulbert, a vertebrate paleontologist at the Florida Museum of Natural History on the UF campus. “The method described in the study has been shown to work with 12-million-year-old fossils from Florida and the next step is to look at even older fossils. For example, we have no teeth of Titanoboa, the largest snake ever discovered, but we could use 60-million-year-old crocodylian teeth from the same deposit to find out more about the snake’s environment.”

Funded in part by the National Science Foundation, the new “clumped-isotope” paleothermometer method used in the study analyzes two rare heavy isotopes, carbon-13 and oxygen-18, found in tooth enamel, bones and eggshells.

“Clumping is temperature dependent, so at low temperatures you get more clumping together in a mineral while high temperatures mean less clumping,” said lead author and California Institute of Technology postdoctoral scholar Robert Eagle. “If you can measure the clumping accurately enough, you can work out the temperature at which a mineral formed. In the case of teeth and bone, this will be the body temperature of the organism.”

The researchers first tested the method on modern species: the white rhinoceros, Indian elephant, Nile crocodile, American alligator and sand tiger shark. The study confirmed the rhinoceros and elephant, like all mammals, are warm-blooded, and their tooth enamel forms at about 37 degrees Celsius. Researchers confirmed the accuracy within 2 degrees Celsius by measuring teeth of modern sharks from temperature-controlled aquariums. In the next stage of the study, researchers tested fossils of mammoths and older extinct Florida alligator and rhinoceros species.

“The method we present is a big advance because it allows a direct measurement of the body temperature of extinct species, free from the assumptions required with other approaches,” Eagle said.

Hulbert said previous research to measure body temperatures of extinct species by comparing concentrations of oxygen-16 and oxygen-18 involved making several assumptions about climate during mineral formation including average humidity of a region, the degree of seasonality and distance from nearest ocean.

The study authors concede there are limitations to the clumped isotope analysis method for studying the evolution of thermoregulation. The results are not a lifelong record and only provide a snapshot of temperature of that animal’s body part at the time of formation. Hulbert also said if the tooth enamel has been significantly altered or chemically changed over geologic time, the method will not work.

Eagle said further testing of different-sized dinosaurs and other extinct vertebrates will provide more evidence about whether they were warm- or cold-blooded.

“Temperatures in the range of 26 to 30 degrees Celsius would suggest dinosaurs were similar to alligators and crocodiles,” Eagle said. “Temperatures of 36 degrees or higher would be interesting but would not necessarily mean that they were warm-blooded like mammals. It’s possible the higher body temperature could be a result of their large body mass, which allows greater heat retention than smaller cold-blooded animals like alligators. This question will be better answered after measuring dinosaurs of different sizes.”

Other study authors are John Eiler of the California Institute of Technology; Edwin Schauble of the University of California, Los Angeles; Thomas Tütken of the Universität Bonn in Germany and Aradhna Tripati, who has appointments at the California Institute of Technology, UCLA and the University of Cambridge.

Writer
Vilma Jarvinen
Media Contact
Paul Ramey, pramey@flmnh.ufl.edu, 352-273-2054
Source
Richard Hulbert, rhulbert@flmnh.ufl.edu, 352-273-1930 or 352-273-1821

Richard Hulbert | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>