Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Connects Dots Between Genes and Human Behavior

An international collaboration maps genetic markers of brain development in people with Williams syndrome

Establishing links between genes, the brain and human behavior is a central issue in cognitive neuroscience research, but studying how genes influence cognitive abilities and behavior as the brain develops from childhood to adulthood has proven difficult.

Now, an international team of scientists has made inroads to understanding how genes influence brain structure and cognitive abilities and how neural circuits produce language.

The team studied individuals with a rare disorder known as Williams syndrome. By measuring neural activity in the brain associated with the distinct language skills and facial recognition abilities that are typical of the syndrome, they showed that Williams is due not to a single gene but to distinct subsets of genes, hinting that the syndrome is more complex than originally thought.

“Solutions to understanding the connections between genes, neural circuits and behavior are now emerging from a unique union of genetics and neuroscience,” says Julie Korenberg, a University of Utah professor and an adjunct professor at the Salk Institute, who led the genetics aspects on the new study.

The study was led by Debra Mills, a professor of cognitive neuroscience at Bangor University in Wales. Ursula Bellugi, a professor at the Salk Institute for Biological Studies in La Jolla, was also integrally involved in the research.

Korenberg was convinced that with Mills’ approach of directly measuring the brain’s electrical firing they could solve the puzzle of precisely which genes were responsible for building the brain wiring underlying the different reaction to human faces in Williams syndrome.

“We also discovered,” says Mills, “that in those with Williams syndrome, the brain processes language and faces abnormally from early childhood through middle age. This was a surprise because previous studies had suggested that part of the Williams brain functions normally in adulthood, with little understanding about how it developed.”

The results of the study were published November 12 in Developmental Neuropsychology.

Williams syndrome is caused by the deletion of one of the two usual copies of approximately 25 genes from chromosome 7, resulting in mental impairment. Nearly everyone with the condition is missing these same genes, although a few rare individuals retain one or more genes that most people with Williams have lost. Korenberg was the early pioneer of studying these individuals with partial gene deletions as a way of gathering clues to the specific function of those genes and gene networks. The syndrome affects approximately 1 in 10,000 people around the world, including an estimated 20,000 to 30,000 individuals in the United States.

Although individuals with Williams experience developmental delays and learning disabilities, they are exceptionally sociable and possess remarkable verbal abilities and facial recognition skills in relation to their lower IQ. Bellugi has long observed that sociability also seems to drive language and has spent much of her career studying those with Williams syndrome.

“Williams offers us a window into how the brain works at many different levels,” says Bellugi. “We have the tools to measure the different cognitive abilities associated with the syndrome, and thanks to Julie and Debbie we are now able to combine this with studies of the underlying genetic and neurological aspects.”

Suspecting that specific genes might lie at the origins of brain plasticity, functional changes in the brain that occur with new knowledge or experiences, and that these genes might be linked to the unusual proficiencies of those with Williams, the team enrolled individuals of various ages in their study. They drew from children, adolescents and adults who all had the full genetic deletion for Williams syndrome and compared them with their non-affected peers. Their study is additionally significant for being one of the first to examine the brain structure and its functioning in children with Williams. And, as Korenberg predicted, a critical piece of the puzzle came from including in their study two adults with partial genetic deletions for Williams.

Using highly sensitive sensors to measure brain activity, the researchers, led by Mills, presented their study participants with both visual and auditory stimuli in the form of unfamiliar faces and spoken sentences. They charted the small changes in voltage generated by the areas of the brain responding to these stimuli, a process known as event-related potentials (ERPs). Mills was the first to publish studies on Williams syndrome using ERPs, developed the ERP markers for this study, and oversaw its design and analysis.

Mills identified ERP markers of brain plasticity in Williams syndrome in children and adults of varying ages and developmental stages. These findings are important because the brains of people with Williams are structured differently than those of people without the syndrome. In the Williams brain, the dorsal areas (along the back and top), which help control vision and spatial understanding, are undersized. The ventral areas (at the front and the bottom), which influence language, facial recognition, emotion and social drive, are relatively normal in size.

It was previously believed that in individuals with Williams, the ventral portion of the brain operated normally. What the team discovered, however, was that this area of the brain also processed information differently than those without the syndrome, and did so throughout development, from childhood to the adult years. This suggests that the brain was compensating in order to analyze information; in other words, it was exhibiting plasticity. Of additional importance, the distinct ERP markers identified by Mills are so characteristic of the different brain organization in Williams that this information alone is approximately 90 percent accurate when analyzing brain activity to identify someone with Williams syndrome.

Other key findings of the study resulted from comparing the ERPs of participants with full Williams deletion with those with partial genetic deletions. While psychological tests focused on facial recognition show no difference between these groups, the scientists found differences in these recognition abilities on the ERP measurements, which look directly at neural activity. Thus, the scientists were able to see how very slight genetic differences affected brain activity, which will allow them identify the roles of sub-sets of Williams genes in brain development and in adult facial recognition abilities.

By combining these one-in-a-million people with tools capable of directly measuring brain activity, the scientists now have the unprecedented opportunity to study the genetic underpinnings of mental disorders. The results of this study not only advance science’s understanding of the links between genes, the brain and behavior, but may lead to new insight into such disorders as autism, Down syndrome and schizophrenia.

“By greatly narrowing the specific genes involved in social disorders, our findings will help uncover targets for treatment and provide measures by which these and other treatments are successful in alleviating the desperation of autism, anxiety and other disorders,” says Korenberg.

The research was supported by grants from the National Institute of Child Health and Human Development; the National Institute of Neurological Disorders and Stroke; and the Utah Science, Technology and Research Initiative.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

About the University of Utah:
The University of Utah, situated in Salt Lake City, was founded in 1850 and enrolls over 26,000 students. It is one of the leading institutions where internationally known teams of fundamental neuroscientists, physicians and engineers work closely to generate creative solutions from drug discovery to treatments for autism, social behavior, cancer, diabetes and aging. Set in the beauty of the American west, this unique environment offers 75 undergraduate degree programs, along with more than 50 teaching majors and minors, and 96 graduate majors. According to the National Science Foundation, the university is ranked among the top 35 research institutions in the country.
About Bangor University:
Founded in 1884, Bangor University in Wales has a long tradition of excellence in research and teaching. Bangor has over 11,000 students based in 23 Academic Schools grouped into five colleges. The School of Psychology at Bangor was ranked eleventh in the United Kingdom for research in the last UK Research Assessment Exercise and is ranked within the top 100 psychology departments worldwide by the QS World University Rankings. Bangor University School of Psychology has an international reputation for being one of the world’s leading programs in cognitive neuroscience.

Kat Kearney | Newswise
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>