Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study confirms safety, cancer-targeting ability of nutrient in broccoli, other vegetables

Sulforaphane, one of the primary phytochemicals in broccoli and other cruciferous vegetables that helps them prevent cancer, has been shown for the first time to selectively target and kill cancer cells while leaving normal prostate cells healthy and unaffected.

The findings, made by scientists in the Linus Pauling Institute at Oregon State University, are another important step forward for the potential use of sulforaphone in cancer prevention and treatment. Clinical prevention trials are already under way for its use in these areas, particularly prostate and breast cancer.

It appears that sulforaphane, which is found at fairly high levels in broccoli, cauliflower and other cruciferous vegetables, is an inhibitor of histone deacetylase, or HDAC enzymes. HDAC inhibition is one of the more promising fields of cancer treatment and is being targeted from both a pharmaceutical and dietary approach, scientists say.

“It’s important to demonstrate that sulforaphane is safe if we propose to use it in cancer prevention or therapies,” said Emily Ho, a principal investigator in the Linus Pauling Institute, lead author on the study and associate professor in the OSU Department of Nutrition and Exercise Sciences.

“Just because a phytochemical or nutrient is found in food doesn’t always mean its safe, and a lot can also depend on the form or levels consumed,” Ho said. “But this does appear to be a phytochemical that can selectively kill cancer cells, and that’s always what you look for in cancer therapies.”

The findings were published in Molecular Nutrition and Food Research, a professional journal. Research was supported by the National Cancer Institute, National Institute of Environmental Health Sciences and the OSU Agricultural Experiment Station.

The Linus Pauling Institute has conducted some of the leading studies on sulforaphane’s role as an HDAC inhibitor – one, but not all, of the mechanisms by which it may help prevent cancer. HDACs are a family of enzymes that, among other things, affect access to DNA and play a role in whether certain genes are expressed or not, such as tumor suppressor genes.

Some of the mechanisms that help prevent inappropriate cell growth – the hallmark of cancer – are circumvented in cancer cells. HDAC inhibitors can help “turn on” these silenced genes and restore normal cellular function.

Previous OSU studies done with mouse models showed that prostate tumor growth was slowed by a diet containing sulforaphane.

“It is well documented that sulforaphane can target cancer cells through multiple chemopreventive mechanisms,” the researchers wrote in their study. “Here we show for the first time that sulforaphane selectively targets benign hyperplasia cells and cancerous prostate cells while leaving the normal prostate cells unaffected.”

“These findings regarding the relative safety of sulforaphane to normal tissues have significant clinical relevance as the use of sulforaphane moves towards use in human clinical trials,” they said.

The results also suggest that consumption of sulforaphane-rich foods should be non-toxic, safe, simple and affordable.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

Emily Ho | EurekAlert!
Further information:

Further reports about: HDAC Nutrition OSU cancer cells cancer prevention mouse model tumor suppressor gene

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>