Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study catches 2 bird populations as they split into seperate species

15.07.2009
A new study finds that a change in a single gene has sent two closely related bird populations on their way to becoming two distinct species. The study, published in the August issue of the American Naturalist, is one of only a few to investigate the specific genetic changes that drive two populations toward speciation.

Speciation, the process by which different populations of the same species split into separate species, is central to evolution. But it's notoriously hard to observe in action. This study, led by biologist J. Albert Uy of Syracuse University, captures two populations of monarch flycatcher birds just as they arrive at that evolutionary crossroads.

Monarch flycatchers are small, insect-eating birds common in the Solomon Islands, east of Papua New Guinea. Uy and his team looked at two flycatcher populations: one found mostly on the large island of Makira, the other on smaller surrounding islands. Besides where they live, the only discernable difference between the two populations is the color of their feathers. The birds on Makira have all black feathers. Birds on the smaller islands have the same black feathers, but with a chestnut-colored belly.

The question of whether these two populations are on the road to speciation comes down to sex. When two populations stop exchanging genes—that is, stop mating with each other—then they can be considered distinct species. Uy and his team wanted to see if these flycatchers were heading in that direction.

It would be all but impossible to try to catalog every occasion on which an all-black flycatcher mated with a chestnut-bellied. So Uy and his team used another test.

Flycatcher males defend their mating territories. If a potential rival male enters another's territory, fights often ensue. If all-black males react less violently to chestnut-bellied males and vice versa, that's an indication that the two don't recognize each other as reproductive rivals. If they don't see each other as rivals, then one can assume that mating between members of the two populations is rare.

So Uy and his team made all-black and chestnut-bellied taxidermy models. They used the models to invade mating territories in each population. As expected, when all-black birds were presented with all-black models, they attacked. But when all-black birds encountered chestnut-bellied models, they were much less likely to go on the offensive. The same scenario held for the chestnut-bellied birds.

That males from the two populations no longer view the other as a reproductive threat is a good indication that not much mating is taking place between the two groups. Their evolutionary paths are diverging, Uy and his team found—all because of a change in plumage.

The researchers then went a step further. They looked into the birds' genomes to see what genes may have played a role in the different plumage pattern. They found only one: the melanocortin-1 receptor gene (MC1R). The MC1R gene regulates the production of melanin, which gives skin and feathers their color. The all-black and chestnut-bellied birds had different versions of the MC1R gene, which gave rise to the plumage change.

That change appears to have been enough to create a reproductive barrier for flycatchers. Not every species is so picky, so a color change doesn't always drive speciation. Nonetheless, these results suggest that it can take as little as one gene, in the right spot in the genome, to cause a fork in the evolutionary road.

J. Albert C. Uy, Robert G. Moyle, Christopher E. Filardi, Zachary A. Cheviron, "Difference in Plumage Color Used in Species Recognition between Incipient Species Is Linked to a Single Amino Acid Substitution in the Melanocortin-1 Receptor." The American Naturalist August 2009.

Since its inception in 1867, the American Naturalist has maintained its position as one of the world's most renowned, peer-reviewed publications in ecology, evolution, and population and integrative biology research.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>