Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Cat Diet Leads to Key Nervous System Repair Discovery

31.03.2009
Scientists studying a mysterious neurological affliction in cats have discovered a surprising ability of the central nervous system to repair itself and restore function.

In a study published today (March 30, 2009) in the Proceedings of the National Academy of Sciences, a team of researchers from the University of Wisconsin-Madison reports that the restoration in cats of myelin — a fatty insulator of nerve fibers that degrades in a host of human central nervous system disorders, the most common of which is multiple sclerosis — can lead to functional recovery.

“The fundamental point of the study is that it proves unequivocally that extensive remyelination can lead to recovery from a severe neurological disorder,” says Ian Duncan, the UW-Madison neuroscientist who led the research. “It indicates the profound ability of the central nervous system to repair itself.”

The finding is important because it underscores the validity of strategies to reestablish myelin as a therapy for treating a range of severe neurological diseases associated with the loss or damage of myelin, but where the nerves themselves remain intact.

Myelin is a fatty substance that forms a sheath for nerve fibers, known as axons, and facilitates the conduction of nerve signals. Its loss through disease causes impairment of sensation, movement, cognition and other functions, depending on which nerves are affected.

The new study arose from a mysterious affliction of pregnant cats. A company testing the effects on growth and development in cats using diets that had been irradiated reported that some cats developed severe neurological dysfunction, including movement disorders, vision loss and paralysis. Taken off the diet, the cats recovered slowly, but eventually all lost functions were restored.

“After being on the diet for three to four months, the pregnant cats started to develop progressive neurological disease,” says Duncan, a professor of medical sciences at the UW-Madison School of Veterinary Medicine and an authority on demyelinating diseases. “Cats put back on a normal diet recovered. It’s a very puzzling demyelinating disease.”

The afflicted cats were shown to have severe and widely distributed demyelination of the central nervous system, according to Duncan. And while the neurological symptoms exhibited by the cats are similar to those experienced by humans with demyelination disorders, the malady does not seem to be like any of the known myelin-related diseases of humans.

In cats removed from the diet, recovery was slow, but all of the previously demyelinated axons became remyelinated. The restored myelin sheaths, however, were not as thick as healthy myelin, Duncan notes.

“It’s not normal, but from a physiological standpoint, the thin myelin membrane restores function,” he says. “It’s doing what it is supposed to do.”

Knowing that the central nervous system retains the ability to forge new myelin sheaths anywhere the nerves themselves are preserved provides strong support for the idea that if myelin can be restored in diseases such as multiple sclerosis, it may be possible for patients to regain lost or impaired functions: “The key thing is that it absolutely confirms the notion that remyelinating strategies are clinically important,” Duncan says.

The exact cause of the neurological affliction in the cats on the experimental diet is unknown, says Duncan, who was not involved in the original study of diet.

“We think it is extremely unlikely that [irradiated food] could become a human health problem,” Duncan explains. “We think it is species specific. It’s important to note these cats were fed a diet of irradiated food for a period of time.”

In addition to Duncan, authors of the new PNAS study include Alexandra Brower of the Wisconsin Veterinary Diagnostic Laboratory; Yoichi Kondo and Ronald Schultz of the UW-Madison School of Veterinary Medicine; and Joseph Curlee, Jr. of Harlan Laboratories in Madison.

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>