Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Cat Diet Leads to Key Nervous System Repair Discovery

31.03.2009
Scientists studying a mysterious neurological affliction in cats have discovered a surprising ability of the central nervous system to repair itself and restore function.

In a study published today (March 30, 2009) in the Proceedings of the National Academy of Sciences, a team of researchers from the University of Wisconsin-Madison reports that the restoration in cats of myelin — a fatty insulator of nerve fibers that degrades in a host of human central nervous system disorders, the most common of which is multiple sclerosis — can lead to functional recovery.

“The fundamental point of the study is that it proves unequivocally that extensive remyelination can lead to recovery from a severe neurological disorder,” says Ian Duncan, the UW-Madison neuroscientist who led the research. “It indicates the profound ability of the central nervous system to repair itself.”

The finding is important because it underscores the validity of strategies to reestablish myelin as a therapy for treating a range of severe neurological diseases associated with the loss or damage of myelin, but where the nerves themselves remain intact.

Myelin is a fatty substance that forms a sheath for nerve fibers, known as axons, and facilitates the conduction of nerve signals. Its loss through disease causes impairment of sensation, movement, cognition and other functions, depending on which nerves are affected.

The new study arose from a mysterious affliction of pregnant cats. A company testing the effects on growth and development in cats using diets that had been irradiated reported that some cats developed severe neurological dysfunction, including movement disorders, vision loss and paralysis. Taken off the diet, the cats recovered slowly, but eventually all lost functions were restored.

“After being on the diet for three to four months, the pregnant cats started to develop progressive neurological disease,” says Duncan, a professor of medical sciences at the UW-Madison School of Veterinary Medicine and an authority on demyelinating diseases. “Cats put back on a normal diet recovered. It’s a very puzzling demyelinating disease.”

The afflicted cats were shown to have severe and widely distributed demyelination of the central nervous system, according to Duncan. And while the neurological symptoms exhibited by the cats are similar to those experienced by humans with demyelination disorders, the malady does not seem to be like any of the known myelin-related diseases of humans.

In cats removed from the diet, recovery was slow, but all of the previously demyelinated axons became remyelinated. The restored myelin sheaths, however, were not as thick as healthy myelin, Duncan notes.

“It’s not normal, but from a physiological standpoint, the thin myelin membrane restores function,” he says. “It’s doing what it is supposed to do.”

Knowing that the central nervous system retains the ability to forge new myelin sheaths anywhere the nerves themselves are preserved provides strong support for the idea that if myelin can be restored in diseases such as multiple sclerosis, it may be possible for patients to regain lost or impaired functions: “The key thing is that it absolutely confirms the notion that remyelinating strategies are clinically important,” Duncan says.

The exact cause of the neurological affliction in the cats on the experimental diet is unknown, says Duncan, who was not involved in the original study of diet.

“We think it is extremely unlikely that [irradiated food] could become a human health problem,” Duncan explains. “We think it is species specific. It’s important to note these cats were fed a diet of irradiated food for a period of time.”

In addition to Duncan, authors of the new PNAS study include Alexandra Brower of the Wisconsin Veterinary Diagnostic Laboratory; Yoichi Kondo and Ronald Schultz of the UW-Madison School of Veterinary Medicine; and Joseph Curlee, Jr. of Harlan Laboratories in Madison.

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>