Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of Cat Diet Leads to Key Nervous System Repair Discovery

31.03.2009
Scientists studying a mysterious neurological affliction in cats have discovered a surprising ability of the central nervous system to repair itself and restore function.

In a study published today (March 30, 2009) in the Proceedings of the National Academy of Sciences, a team of researchers from the University of Wisconsin-Madison reports that the restoration in cats of myelin — a fatty insulator of nerve fibers that degrades in a host of human central nervous system disorders, the most common of which is multiple sclerosis — can lead to functional recovery.

“The fundamental point of the study is that it proves unequivocally that extensive remyelination can lead to recovery from a severe neurological disorder,” says Ian Duncan, the UW-Madison neuroscientist who led the research. “It indicates the profound ability of the central nervous system to repair itself.”

The finding is important because it underscores the validity of strategies to reestablish myelin as a therapy for treating a range of severe neurological diseases associated with the loss or damage of myelin, but where the nerves themselves remain intact.

Myelin is a fatty substance that forms a sheath for nerve fibers, known as axons, and facilitates the conduction of nerve signals. Its loss through disease causes impairment of sensation, movement, cognition and other functions, depending on which nerves are affected.

The new study arose from a mysterious affliction of pregnant cats. A company testing the effects on growth and development in cats using diets that had been irradiated reported that some cats developed severe neurological dysfunction, including movement disorders, vision loss and paralysis. Taken off the diet, the cats recovered slowly, but eventually all lost functions were restored.

“After being on the diet for three to four months, the pregnant cats started to develop progressive neurological disease,” says Duncan, a professor of medical sciences at the UW-Madison School of Veterinary Medicine and an authority on demyelinating diseases. “Cats put back on a normal diet recovered. It’s a very puzzling demyelinating disease.”

The afflicted cats were shown to have severe and widely distributed demyelination of the central nervous system, according to Duncan. And while the neurological symptoms exhibited by the cats are similar to those experienced by humans with demyelination disorders, the malady does not seem to be like any of the known myelin-related diseases of humans.

In cats removed from the diet, recovery was slow, but all of the previously demyelinated axons became remyelinated. The restored myelin sheaths, however, were not as thick as healthy myelin, Duncan notes.

“It’s not normal, but from a physiological standpoint, the thin myelin membrane restores function,” he says. “It’s doing what it is supposed to do.”

Knowing that the central nervous system retains the ability to forge new myelin sheaths anywhere the nerves themselves are preserved provides strong support for the idea that if myelin can be restored in diseases such as multiple sclerosis, it may be possible for patients to regain lost or impaired functions: “The key thing is that it absolutely confirms the notion that remyelinating strategies are clinically important,” Duncan says.

The exact cause of the neurological affliction in the cats on the experimental diet is unknown, says Duncan, who was not involved in the original study of diet.

“We think it is extremely unlikely that [irradiated food] could become a human health problem,” Duncan explains. “We think it is species specific. It’s important to note these cats were fed a diet of irradiated food for a period of time.”

In addition to Duncan, authors of the new PNAS study include Alexandra Brower of the Wisconsin Veterinary Diagnostic Laboratory; Yoichi Kondo and Ronald Schultz of the UW-Madison School of Veterinary Medicine; and Joseph Curlee, Jr. of Harlan Laboratories in Madison.

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>