Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Advances New Target for CNS Drug Development

19.01.2010
A breakthrough discovery by scientists at the University of Kentucky could someday lead to new treatments for a variety of diseases of the brain, spinal cord and the eye.

Researchers led by Royce Mohan, associate professor of ophthalmology and visual science in the UK College of Medicine, found that the small molecule withaferin A can simultaneously target two key proteins — vimentin and glial fibrillary acidic protein (GFAP) — implicated in a damaging biological process called reactive gliosis.

Both vimentin and GFAP, members of a family of proteins called intermediate filaments, are important factors in the stress response of the central nervous system (CNS). But pathology in the CNS from a traumatic injury or neurodegenerative disease can cause overexpression of vimentin and GFAP and lead to reactive gliosis.

During gliosis, astrocyte cells that express vimentin and GFAP accumulate into dense, fibrous patches called glial scars, which interfere with normal functioning of the CNS. Gliosis is a significant feature of many disorders of the CNS, including multiple sclerosis, Alzheimer's disease, stroke, and traumatic brain and spinal cord injury, and it is also central to major retinal diseases such as age-related macular degeneration, diabetic retinopathy and glaucoma.

Mohan’s lab discovered that withaferin A binds to both vimentin and GFAP within an unique pocket when these proteins are in their soluble, tetrameric form. This finding makes withaferin A an appealing therapeutic lead for drug-development research, Mohan said, and he owes great credit to the interdisciplinary team of collaborators who contributed to extending this finding.

Mohan describes the discovery as serendipitous. Originally, his team was investigating withaferin A as an angiogenesis inhibitor, a type of drug used to slow the development and growth of new blood vessels. Such drugs are useful in treating cancers and various conditions of the eye, such as corneal neovascularization, wet-stage macular degeneration and glaucoma.

Using an approach called reverse chemical genetics, Mohan's lab started with the identification of withaferin A as a vimentin probe, and then looked for CNS pathological indications where the related type III intermediate filament GFAP is critically involved.

"It was fortuitous that we looked at the retina of injured mice," Mohan said. "This drug was causing simultaneous inhibition of both corneal angiogenesis and retinal gliosis, a finding that is relevant to combat ocular trauma from the alarming incidence of blast injuries. Rarely does one get the opportunity to make an important discovery that advances on two drug targets at once."

This research was supported by grants from the National Institutes of Health, the RPB Foundation and the Kentucky Science and Technology Corporation. The study, "Withaferin A Targets Intermediate Filaments GFAP and Vimentin in a Model of Retinal Gliosis," was published online Jan. 4 in the Journal of Biological Chemistry, with senior scientist Paola Bargagna-Mohan as lead author. Additional authors are: Riya R. Paranthan, Adel Hamza, Neviana Dimova, Beatrice Trucchi, Cidambi Srinivasan, Gregory I. Elliott, Chang-Guo Zhan, Daniel L. Lau, Haiyan Zhu, Kousuke Kasahara, Masaki Inagaki, Franca Cambi and Royce Mohan.

Keith Hautala | Newswise Science News
Further information:
http://www.uky.edu

Further reports about: Advance CNS Drug Delivery End User Development GFAP Gliosis Kentucky Mohan Target blood vessel key protein

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>