Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of 16 developing countries shows climate change could deepen poverty

24.08.2009
Urban workers could suffer most from climate change as the cost of food drives them into poverty, according to a new study that quantifies the effects of climate on the world's poor populations.

A team led by Purdue University researchers examined the potential economic influence of adverse climate events, such as heat waves, drought and heavy rains, on those in 16 developing countries. Urban workers in Bangladesh, Mexico and Zambia were found to be the most at risk.

"Extreme weather affects agricultural productivity and can raise the price of staple foods, such as grains, that are important to poor households in developing countries," said Noah Diffenbaugh, the associate professor of earth and atmospheric sciences and interim director of Purdue's Climate Change Research Center who co-led the study. "Studies have shown global warming will likely increase the frequency and intensity of heat waves, drought and floods in many areas. It is important to understand which socioeconomic groups and countries could see changes in poverty rates in order to make informed policy decisions."

The team used data from the late 20th century and projections for the late 21st century to develop a framework that examined extreme climate events, comparable shocks to grain production and the impact on the number of impoverished people in each country.

Thomas Hertel, a distinguished professor of agricultural economics and co-leader of the study, said that although urban workers only contribute modestly to total poverty rates in the sample countries, they are the most vulnerable group to changes in grains production.

"Food is a major expenditure for the poor and, while those who work in agriculture would have some benefit from higher grains prices, the urban poor would only get the negative effects," said Hertel, who also is executive director of Purdue's Center for Global Trade Analysis. "This is an important finding given that the United Nations projects a continuing shift in population concentrations from rural to urban areas in virtually all of these developing countries."

With nearly 1 billion of the world's poor living on less than $1 a day, extreme events can have a devastating impact, he said.

"Bangladesh, Mexico and Zambia showed the greatest percentage of the population entering poverty in the wake of extreme drought, with an additional 1.4 percent, 1.8 percent and 4.6 percent of their populations being impoverished by future climate extremes, respectively," Hertel said. "This translates to an additional 1.8 million people impoverished per country for Bangladesh and Mexico and an additional half million people in Zambia."

A paper detailing the work will be published in Thursday's (Aug. 20) issue of Environmental Research Letters. In addition to Diffenbaugh and Hertel, Syud Amer Ahmed, a recent Purdue graduate and a member of the development research group for The World Bank, co-authored the paper. The World Bank's Trust Fund for Environmentally and Socially Sustainable Development funded the research.

The team identified the maximum rainfall, drought and heat wave for the 30-year periods of 1971-2000 and 2071-2100 and then compared the maximums for the two time periods.

The global climate model experiments developed by the Intergovernmental Panel on Climate Change, or IPCC, were used for the future projections of extreme events. The team used an IPCC scenario that has greenhouse gas emissions continuing to follow the current trend, Diffenbaugh said.

"The occurrence and magnitude of what are currently the 30-year-maximum values for wet, dry and hot extremes are projected to substantially increase for much of the world," he said. "Heat waves and drought in the Mediterranean showed a potential 2700 percent and 800 percent increase in occurrence, respectively, and extreme rainfall in Southeast Asia was projected to potentially increase by 900 percent."

In addition, Southeast Asia showed a projected 40 percent increase in the magnitude of the worst rainfall; central Africa showed a projected 1000 percent increase in the magnitude of the worst heat wave; and the Mediterranean showed a projected 60 percent increase in the worst drought.

A statistical analysis was used to determine grain productivity shocks that would correspond in magnitude to the climate extremes, and then the economic impact of the supply shock was determined. Future predicted extreme climate events were compared to historical agricultural productivity extremes in order to assess the likely impact on agricultural production, prices and wages. Because the projected changes in extreme rainfall and heat wave events were too large for the current model to accept, only the extreme drought events were incorporated into the economic projections, making the projected poverty impacts a conservative estimate, he said.

To assess the potential economic impact of a given change in wages and grains prices, the team used data from each country's household survey. The estimates of likely wage and price changes following an extreme climate event were obtained from a global trade model, called the Global Trade Analysis Project, or GTAP, which is maintained by Purdue's agricultural economics department.

Purdue's GTAP framework is supported by an international consortium of 27 national and international agencies and is used by a network of 6,500 researchers in 140 countries.

Large reductions in grains productivity due to extreme climate events are supported by historical data. In 1991 grains productivity in Malawi and Zambia declined by about 50 percent when southern Africa experienced a severe drought.

Diffenbaugh said this is an initial quantification of how poverty is tied to climate fluctuations, and the team is working to improve the modeling and analysis system in order to enable more comprehensive assessments of the link between climate volatility and poverty vulnerability.

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu

Sources:
Noah Diffenbaugh, 765-490-7288, diffenbaugh@purdue.edu
Thomas Hertel, 765-494-4199, hertel@purdue.edu
Related Web sites:
Purdue Climate Change Research Center: http://www.purdue.edu/climate/
Purdue Center for Global Trade Analysis: https://www.gtap.agecon.purdue.edu/

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>