Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Studies shed light on preserving fertility among cancer patients

Cancer treatment has come a long way, leading to a multitude of therapy options and improved survival rates.

These successes, however, have created a challenge for young cancer patients since chemotherapy and radiation treatments that often save lives threaten fertility.

Techniques available to safeguard fertility, such as freezing eggs for later embryo development, have poor odds of success, leaving patients with very limited options for the future. But that is beginning to change as researchers improve current techniques, mature human eggs in the laboratory, and discover cellular mechanisms that could help preserve and even restore fertility.

Researchers will report on these and other findings at the 42nd annual meeting of the Society for the Study of Reproduction (SSR), July 18 to 22, at the David L. Lawrence Convention Center in Pittsburgh.

Summaries of the findings are as follows:

Growing Egg Cells in the Lab

Researchers at Northwestern University are developing a method they hope will help preserve a woman's fertility after radiation and chemotherapy treatment. Led by Teresa K. Woodruff, Ph.D., the team has grown undeveloped human eggs to near maturity in laboratory cultures. During a 30-day experiment, they grew human follicles¯tiny sacs that contain immature eggs¯in the lab until the eggs they contained were nearly mature. According to Dr. Woodruff, this is the first step in developing a new fertility option for young cancer patients.

Making a More Viable Embryo

Cryopreservation, the process of freezing eggs for later fertilization, has played a major role in assisted reproductive technology for the past two decades. Unfortunately, however, eggs rarely survive the freezing and thawing processes required to develop a viable embryo. A mere half of eggs survive and of these, only 20 percent, once fertilized, result in the birth of a baby. According to David Albertini, Ph.D., University of Kansas Medical Center, clinicians may be waiting too long – three hours – after thawing eggs to initiate fertilization with the sperm, a process necessary to create an embryo. When his research team used confocal microscopy to observe what was happening at a chromosomal level, they found that the structures needed to make the embryo's chromosomes align and divide were in place after only an hour. This indicates a shorter thawing time frame could have greater potential for success.

Restoring Fertility From the Bottom Up

Researchers at Stanford University, led by Renee A. Reijo Pera, Ph.D., have identified several genes involved in the formation of germ cells that give rise to eggs and sperm. These genes, DAZ and DAZL, form the basis of human embryo and germ cell growth and may be a key to understanding human reproductive failure – one of the most common health problems in men and women and a common cause of birth defects. While continued progress in developing germ cells capable of making embryos renders fertility restoration feasible, it also raises significant ethical questions, says Dr. Reijo Pera.

The Society for the Study of Reproduction was founded in 1967 to promote the study of reproduction by fostering interdisciplinary communication among scientists through conferences and publications in the organization's journal, Biology of Reproduction. The SSR president is Asgerally T. Fazleabas, Ph.D., University of Illinois College of Medicine in Chicago. Program committee chair is Patricia Hunt, Ph.D., Washington State University; and chair of the local organizing committee is Tony M. Plant, Ph.D., University of Pittsburgh School of Medicine.

NOTE TO EDITORS: The scientists will discuss their research during a briefing, "Preserving Fertility: Causes and Solutions," at 11:30 a.m., Monday, July 20, which will be moderated by Patricia Hunt, Ph.D., Washington State University, and 2009 SSR program chair. All briefings take place in room 312 of the David L. Lawrence Convention Center, Pittsburgh. Reporters may participate via telephone conference call by dialing 800-937-0301 (from within the U.S. and Canada). From other countries, call +1 303-248-9679. To be connected to the briefing, enter access code 6489725. The press room hours are 8 a.m. to 5 p.m., Monday, July 20, through Tuesday, July 21, and 8 a.m. to 1 p.m., Wednesday, July 22. Press room staff may be reached during this time at (412) 352-2886. Otherwise, please call UPMC Media Relations at (412) 647-3555.

Clare Collins | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>