Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies reveal downstream processes of ion channel inactivation

03.03.2010
Two studies by researchers at The Johns Hopkins University School of Medicine reveal new details of the mechanisms of ion channel inactivation. The papers appear in the March issue of The Journal of General Physiology (www.jgp.org).

After opening, many ion channels spontaneously close by inactivation, a process distinct from that involved in opening. The inactivation of channels is important for a variety of biological processes, including the timing of action potentials and the control of calcium permeability, which affects many aspects of intracellular signaling. Although the events of Ca2+-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) have been unveiled in the past decade, the downstream mechanisms remained unclear.

Tadross et al. studied both CDI and VDI in Cav1.3 channels and showed them to differ not only in their initiation mechanisms but also in their distinct molecular endpoints. For CDI, a clear pattern emerges: activation-enhancing mutations proportionately weaken inactivation, supporting the idea that CDI reduces channel permeability by allosteric hindrance of the activation gate. For VDI, the data implicate a "hinged lid–shield" mechanism, similar to a hinged-lid process, with a previously unrecognized feature, a "shield" in Cav1.3 channels that is specialized to repel lid closure.

In a Commentary accompanying the papers, Jianmin Cui (Washington University, St. Louis) examines the mechanisms of inactivation and provides context for the importance of the new findings by Tadross et al.

... more about:
»CDI »Cav1 »Gen FTO »JGP »Physiology »VDI »biological process

About The Journal of General Physiology

Founded in 1918, The Journal of General Physiology (JGP) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists. JGP content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jgp.org.

Cui, J. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010421.
Tadross, M.R., et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910308.
Tadross, M.R., and D.T. Yue. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910309.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org
http://www.jgp.org

Further reports about: CDI Cav1 Gen FTO JGP Physiology VDI biological process

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>