Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies reveal downstream processes of ion channel inactivation

03.03.2010
Two studies by researchers at The Johns Hopkins University School of Medicine reveal new details of the mechanisms of ion channel inactivation. The papers appear in the March issue of The Journal of General Physiology (www.jgp.org).

After opening, many ion channels spontaneously close by inactivation, a process distinct from that involved in opening. The inactivation of channels is important for a variety of biological processes, including the timing of action potentials and the control of calcium permeability, which affects many aspects of intracellular signaling. Although the events of Ca2+-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) have been unveiled in the past decade, the downstream mechanisms remained unclear.

Tadross et al. studied both CDI and VDI in Cav1.3 channels and showed them to differ not only in their initiation mechanisms but also in their distinct molecular endpoints. For CDI, a clear pattern emerges: activation-enhancing mutations proportionately weaken inactivation, supporting the idea that CDI reduces channel permeability by allosteric hindrance of the activation gate. For VDI, the data implicate a "hinged lid–shield" mechanism, similar to a hinged-lid process, with a previously unrecognized feature, a "shield" in Cav1.3 channels that is specialized to repel lid closure.

In a Commentary accompanying the papers, Jianmin Cui (Washington University, St. Louis) examines the mechanisms of inactivation and provides context for the importance of the new findings by Tadross et al.

... more about:
»CDI »Cav1 »Gen FTO »JGP »Physiology »VDI »biological process

About The Journal of General Physiology

Founded in 1918, The Journal of General Physiology (JGP) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists. JGP content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jgp.org.

Cui, J. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010421.
Tadross, M.R., et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910308.
Tadross, M.R., and D.T. Yue. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910309.

Rita Sullivan | EurekAlert!
Further information:
http://www.rupress.org
http://www.jgp.org

Further reports about: CDI Cav1 Gen FTO JGP Physiology VDI biological process

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>