Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Studies Reveal How Cells Distinguish Between Disease-Causing and Innocuous Invaders

The specific mechanisms by which humans and other animals are able to discriminate between disease-causing microbes and innocuous ones in order to rapidly respond to infections have long been a mystery to scientists. But a study conducted on roundworms by biologists at UC San Diego has uncovered some important clues to finally answering that question.

In a paper published in this week’s early online issue of the journal Cell Host & Microbe, the researchers discovered that intestinal cells in the roundworm C. elegans, which are similar in structure to those in humans, internalize bacterial toxins that inactivate several host processes. This then triggers an immune response, which results in the body mounting an immediate attack against the disease-causing microbes.

Green fluorescent proteins signify the expression of immune genes in the roundworm’s intestine. Credit: Troemel Lab, UC San Diego

“The human intestine is teeming with trillions of bacteria, most of which are innocuous, or even beneficial,” said Emily Troemel, an assistant professor of biology at UC San Diego who headed the study. “However, sometimes microbes cause disease, such as occurs in food poisoning.”

The UC San Diego study and two others published this week in the journals Cell and Cell Host & Microbe by research teams headed by Frederick Ausubel and Gary Ruvkun at the Massachusetts General Hospital and the Harvard Medical School, show that the way animal cells detect an attack by poisons or disease-causing bacteria is by monitoring the function of their own cells. If those cells detect a deficit in functions, the scientists discovered, they then trigger a variety of antibacterial or antitoxin responses against the invaders.

The roundworms proved to be the ideal laboratory model for these studies. Not only do they have intestinal cells that are similar in structure to human intestinal cells, but they are transparent and easy to maintain and study in lab.

“C. elegans provides a wonderful system in which to study questions of how humans and other animals defend themselves against attacks from disease-causing organisms,” said Troemel. “It lacks an adaptive immune system and, instead, relies solely on the evolutionarily ancient innate immune system to fight off attacks. Our findings in these roundworms may have uncovered a new ‘pathogen-specific’ branch of the innate immune system, which could function in humans as well.”
Troemel’s team of researchers—who included Tiffany Dunbar, Zhi Yan, Keir Balla and Margery Smelkinson—found in their experiments that a particular genetic system—the “ZIP-2 surveillance pathway”—was used by the roundworm in detecting an infection by the disease-causing bacterium Pseudomonas aeruginosa. The biologists also found that a specific toxin in the bacterium—“Exotoxin A”—blocks protein synthesis in the worm’s intestine.

“Surprisingly, this block leads to increased protein levels of the ZIP-2 transcription factor to ultimately induce expression of defense genes,” the scientists conclude in their paper. “Thus, a common form of pathogen attack acts to switch on host defense, allowing discrimination of pathogens from innocuous microbes.”

“In addition to P. aeruginosa Exotoxin A,” said Troemel, “there are several other bacterial toxins known to block protein synthesis, such as Diphtheria toxin, Ricin toxin and Shiga toxin. These toxins cause substantial impact on public health. For example, a recent epidemic outbreak of Shiga-toxin producing E. coli caused over 3000 cases of food poisoning in Germany leading to 39 deaths. Like Exotoxin A, these toxins can be internalized into the host cell to block protein synthesis. Perhaps the human intestine also monitors disruption of host protein synthesis to detect food poisoning, and induce a response similar to what is found in the C. elegans intestine.”

Troemel noted that it makes sense why animals have evolved systems that respond to core cellular dysfunction, rather than directly to specific toxins.

“We live in an environment filled with a wide variety of disease-causing organisms that can attack us using toxins,” she said. “While these toxins are diverse in structure, the manner by which they disrupt our cellular machinery can be very similar. Directly monitoring the functioning of our cellular machinery may provide the optimal system for early detection and response to unknown toxins or pathogens.”

The UC San Diego study was funded by the NIAID, Moores Cancer Center, Searle Scholars Program, Ray Thomas Edwards Foundation and David & Lucille Packard Foundation.

Kim McDonald | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>