Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies provide important new information on genetic risk of sudden cardiac death

01.07.2014

MGH-led reports identify greater role for calcium signaling in regulation of cardiac function

Two international research studies, both led by investigators affiliated with Massachusetts General Hospital (MGH) and the Broad Institute of MIT and Harvard, have uncovered new information about genes that may increase the risk of serious cardiac arrhythmias. The studies recently received back-to-back advance online publication in Nature Genetics and Nature Methods.

The Nature Genetics report identifies several new gene regions associated with variations in the QT interval – a stage in the heart's electrical cycle that, if prolonged, increases the risk of drug-induced arrhythmias and sudden cardiac death. A surprising finding of that paper was the extent to which genes involved in calcium signaling influence the QT interval, the time from electrical activation of heart cells, which stimulates contraction, to the end of electrical relaxation.

"We have known that calcium signaling is critically important in regulating the contraction of muscle cells that generates the heartbeat," says Christopher Newton-Cheh, MD, MPH, of the MGH Center for Human Genetic Research and Cardiovascular Research Center, corresponding and co-senior author of the Nature Genetics report. "But finding that calcium is also involved in resetting the heart after each beat was a total surprise and represents a new avenue to pursue in the causes of arrhythmias."

The Nature Methods paper describes a novel approach to analyze and map the protein networks that drive cardiac repolarization – the biological process disturbed in arrhythmias. By integrating this network with results from the Nature Genetics paper, the researchers were able to pinpoint specific genes involved in the biology of cardiac repolarization, which would have been challenging to accomplish from the genetics alone. This approach also allowed identification of three genetic variants involved in arrhythmias that had been missed in earlier studies.

"Like people, genes like to work in groups, and we used the newest technologies in genomics and proteomics to derive the working group of genes involved in processes that coordinate the beating of the heart and, when malfunctioning, can cause arrhythmias or sudden cardiac death," says Kasper Lage, PhD, of the MGH Department of Surgery and the Analytic and Translational Genetics Unit, co-senior author of the Nature Methods paper. "Potassium signaling is known to be involved in cardiac repolarization, but our network analysis also pointed to a calcium pump and two proteins regulating this pump as culprits. Finding that calcium signaling also plays a role in repolarization was an unexpected and intriguing discovery."

The Nature Genetics paper describes a meta-analysis of genome-wide association studies (GWAS) involving more than 100,000 individuals that identified 35 common gene variant locations – 22 for the first time – associated with alterations in the QT interval. Identifying a previously unknown role for calcium signaling in the QT interval constitutes, according to Newton-Cheh, "a quantum leap in our ability to study one of the major causes of death in people with heart failure – which is well known to involve calcium abnormalities – and an important cause of fatal arrhythmias that occur as a side effect of several medications."

The team behind the Nature Methods paper used quantitative interaction proteomics, which determines not just whether two proteins interact but the extent of their interaction, to map in mouse hearts networks of proteins encoded by known repolarization genes and confirmed those findings in frog eggs and in zebrafish. Integrating those results with the GWAS analysis revealed that 12 genes in locations identified by the Nature Genetics study encoded proteins in the network described in the Nature Methods paper, providing a strong link between genes well-established to cause rare sudden death syndromes and genes associated with common QT-interval variation in the general population.

"These studies are more than the sum of their parts, because their integration of proteomic networks with genomic findings catalyzes the interpretation of the genetic findings to reveal new biology relevant to dangerous arrhythmias," says Lage. "We also provide a general methodology to interpret genetic data using tissue-specific proteomics networks. Importantly, our analysis also shows that we are able to use computational algorithms such as one developed by Elizabeth Rossin, a co-lead author of our paper, to functionally interpret large genetic association studies.

"The genetics communities' worldwide now use Elizabeth's tools," he adds, "and our study rigorously follows up and confirms their predictions. This is an important result because the ongoing revolution in methods of sequencing genomes and mapping genetic variation has produced massive amounts of genetic data, and we need scalable computational ways to interpret these datasets to guide biological insight and therapeutic intervention. Our study proves the predictions made by our computational tools, thus supporting their ability to provide insight into the molecular networks perturbed by genetics in many common complex disorders."

The consortium behind the Nature Genetics study involved more than 230 investigators at more than 180 institutions in 17 countries. In addition to Newton-Cheh, an assistant professor of Medicine at Harvard Medical School (HMS) and associate member of the Broad Institute, co-senior authors of the Nature Genetics study are Paul de Bakker, PhD, University Medical Center, Utrecht, the Netherlands; Arne Pfeufer, MD, Institute of Human Genetics, Munich, Germany, and Michael Ackerman, MD, PhD, Mayo Clinic. MGH co-authors include co-lead author Sara Pulit, Elizabeth Rossin, MD, PhD, and Mark Daly, PhD.

Along with Lage, an assistant professor at HMS and associate member of the Broad, co-senior authors of the Nature Methods paper are de Bakker and Jesper Olsen, PhD of the University of Copenhagen, Denmark. Additional co-authors include co-lead authors Alicia Lundby, University of Copenhagen, and Elizabeth Rossin, MD, PhD, MGH and Broad Institute; Newton-Cheh and Daly; and David Milan, MD, and Patrick Ellinor, MD, PhD, MGH Cardiology. Both studies were supported by a large number of funders in the U.S. and Europe.

###

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!

Further reports about: Genetics Massachusetts Nature arrhythmias cardiac death genes networks proteins

More articles from Studies and Analyses:

nachricht Brands are Perceived in the Same Way as Faces
28.08.2015 | Leuphana Universität Lüneburg

nachricht “Bank & Zukunft 2015” trend survey highlights the need for banks to reform business models
21.08.2015 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>