Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies provide important new information on genetic risk of sudden cardiac death

01.07.2014

MGH-led reports identify greater role for calcium signaling in regulation of cardiac function

Two international research studies, both led by investigators affiliated with Massachusetts General Hospital (MGH) and the Broad Institute of MIT and Harvard, have uncovered new information about genes that may increase the risk of serious cardiac arrhythmias. The studies recently received back-to-back advance online publication in Nature Genetics and Nature Methods.

The Nature Genetics report identifies several new gene regions associated with variations in the QT interval – a stage in the heart's electrical cycle that, if prolonged, increases the risk of drug-induced arrhythmias and sudden cardiac death. A surprising finding of that paper was the extent to which genes involved in calcium signaling influence the QT interval, the time from electrical activation of heart cells, which stimulates contraction, to the end of electrical relaxation.

"We have known that calcium signaling is critically important in regulating the contraction of muscle cells that generates the heartbeat," says Christopher Newton-Cheh, MD, MPH, of the MGH Center for Human Genetic Research and Cardiovascular Research Center, corresponding and co-senior author of the Nature Genetics report. "But finding that calcium is also involved in resetting the heart after each beat was a total surprise and represents a new avenue to pursue in the causes of arrhythmias."

The Nature Methods paper describes a novel approach to analyze and map the protein networks that drive cardiac repolarization – the biological process disturbed in arrhythmias. By integrating this network with results from the Nature Genetics paper, the researchers were able to pinpoint specific genes involved in the biology of cardiac repolarization, which would have been challenging to accomplish from the genetics alone. This approach also allowed identification of three genetic variants involved in arrhythmias that had been missed in earlier studies.

"Like people, genes like to work in groups, and we used the newest technologies in genomics and proteomics to derive the working group of genes involved in processes that coordinate the beating of the heart and, when malfunctioning, can cause arrhythmias or sudden cardiac death," says Kasper Lage, PhD, of the MGH Department of Surgery and the Analytic and Translational Genetics Unit, co-senior author of the Nature Methods paper. "Potassium signaling is known to be involved in cardiac repolarization, but our network analysis also pointed to a calcium pump and two proteins regulating this pump as culprits. Finding that calcium signaling also plays a role in repolarization was an unexpected and intriguing discovery."

The Nature Genetics paper describes a meta-analysis of genome-wide association studies (GWAS) involving more than 100,000 individuals that identified 35 common gene variant locations – 22 for the first time – associated with alterations in the QT interval. Identifying a previously unknown role for calcium signaling in the QT interval constitutes, according to Newton-Cheh, "a quantum leap in our ability to study one of the major causes of death in people with heart failure – which is well known to involve calcium abnormalities – and an important cause of fatal arrhythmias that occur as a side effect of several medications."

The team behind the Nature Methods paper used quantitative interaction proteomics, which determines not just whether two proteins interact but the extent of their interaction, to map in mouse hearts networks of proteins encoded by known repolarization genes and confirmed those findings in frog eggs and in zebrafish. Integrating those results with the GWAS analysis revealed that 12 genes in locations identified by the Nature Genetics study encoded proteins in the network described in the Nature Methods paper, providing a strong link between genes well-established to cause rare sudden death syndromes and genes associated with common QT-interval variation in the general population.

"These studies are more than the sum of their parts, because their integration of proteomic networks with genomic findings catalyzes the interpretation of the genetic findings to reveal new biology relevant to dangerous arrhythmias," says Lage. "We also provide a general methodology to interpret genetic data using tissue-specific proteomics networks. Importantly, our analysis also shows that we are able to use computational algorithms such as one developed by Elizabeth Rossin, a co-lead author of our paper, to functionally interpret large genetic association studies.

"The genetics communities' worldwide now use Elizabeth's tools," he adds, "and our study rigorously follows up and confirms their predictions. This is an important result because the ongoing revolution in methods of sequencing genomes and mapping genetic variation has produced massive amounts of genetic data, and we need scalable computational ways to interpret these datasets to guide biological insight and therapeutic intervention. Our study proves the predictions made by our computational tools, thus supporting their ability to provide insight into the molecular networks perturbed by genetics in many common complex disorders."

The consortium behind the Nature Genetics study involved more than 230 investigators at more than 180 institutions in 17 countries. In addition to Newton-Cheh, an assistant professor of Medicine at Harvard Medical School (HMS) and associate member of the Broad Institute, co-senior authors of the Nature Genetics study are Paul de Bakker, PhD, University Medical Center, Utrecht, the Netherlands; Arne Pfeufer, MD, Institute of Human Genetics, Munich, Germany, and Michael Ackerman, MD, PhD, Mayo Clinic. MGH co-authors include co-lead author Sara Pulit, Elizabeth Rossin, MD, PhD, and Mark Daly, PhD.

Along with Lage, an assistant professor at HMS and associate member of the Broad, co-senior authors of the Nature Methods paper are de Bakker and Jesper Olsen, PhD of the University of Copenhagen, Denmark. Additional co-authors include co-lead authors Alicia Lundby, University of Copenhagen, and Elizabeth Rossin, MD, PhD, MGH and Broad Institute; Newton-Cheh and Daly; and David Milan, MD, and Patrick Ellinor, MD, PhD, MGH Cardiology. Both studies were supported by a large number of funders in the U.S. and Europe.

###

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | Eurek Alert!

Further reports about: Genetics Massachusetts Nature arrhythmias cardiac death genes networks proteins

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>