Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New studies may explain fractures in some who take osteoporosis drugs

15.11.2013
Research with baboons at the Texas Biomedical Research Institute may help explain why some people who take bone-strengthening drugs like bisphosphonates are at-risk for atypical fractures in the long bones in their legs.

Texas Biomed scientist Lorena M. Havill, Ph.D. and colleagues at the Southwest Research Institute and Indiana University examined femurs of deceased baboons and found differences in the microstructure of their femurs that she traced to genetic variation among the animals.

The study supports the theory that genetic variations may regulate bone remodeling, a natural process during which mature bone tissue is removed from the skeleton so that new tissue can be added. These genetic differences could explain why a small percentage of older women suffer a distinct type of fracture of their femurs when they take bisphosphonates, a type of medication prescribed for millions of people with the bone-weakening disease osteoporosis.

The study, funded by the Texas Biomedical Forum, the Texas Biomed Founder's Council, the San Antonio Area Foundation, and the National Institutes of Health (NIH), is published in the November issue of the journal Calcified Tissue International.

In osteoporosis, bone remodeling happens faster than the growth of new bone tissue to replace the lost bone. Bisphosphonates suppress remodeling, allowing the accumulation of bone tissue.

Havill and others have theorized that some women are genetically predisposed to slower remodeling in the absence of osteoporosis. This genetic difference could be causing the drugs to have a greater effect on them and weaken their bones in areas not typically prone to osteoporotic fractures.

In their study, Havill and her colleagues examined femurs from 101 baboons from the pedigreed colony at Southwest National Primate Research Center. All had died for reasons unrelated to this research project. Their bones were obtained during necropsy and preserved. The researchers did microscopic examinations and found differences in bone remodeling dynamics that were influenced by inherited differences among the animals.

"Baboons are anatomically and physiologically very similar to humans, and these animals live a long time, so they develop many of the same age-related diseases that we do," Havill said. "This makes them a good model for age-related diseases such as osteoporosis. The results of this study suggest an explanation for why some women respond differently to the widely prescribed bisphosphonates."

"This supports the potential for a scenario in which certain individuals who are genetically predisposed to cortical microstructure that is less mechanically advantageous may experience disadvantageous responses to remodeling suppression, such as being at higher risk for atypical femoral fractures," Havill wrote in the study.

This research was supported by NIH grant R21 AR052013.

Texas Biomed, formerly the Southwest Foundation for Biomedical Research, is one of the world's leading independent biomedical research institutions dedicated to advancing global human health through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, the Institute partners with hundreds of researchers and institutions around the world, targeting advances in the fight against emerging infectious diseases, AIDS, hepatitis, malaria, parasitic infections and a host of other diseases, as well as cardiovascular conditions, diabetes, obesity, cancer, psychiatric disorders, and problems of pregnancy. For more information on Texas Biomed, go to http://www.TxBiomed.org, or call Joe Carey, Texas Biomed's Vice President for Public Affairs, at 210-258-9437.

Joseph Carey | EurekAlert!
Further information:
http://www.txbiomed.org

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>