Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel studies of decomposition shed new light on our earliest fossil ancestry

01.02.2010
Revelations of rotting fish provide scientists with clearer picture of early life

Decaying corpses are usually the domain of forensic scientists, but palaeontologists have discovered that studying rotting fish sheds new light on our earliest ancestry.

The researchers, from the Department of Geology at the University of Leicester, devised a new method for extracting information from 500 million year old fossils -they studied the way fish decompose to gain a clearer picture of how our ancient fish-like ancestors would have looked. Their results indicate that some of the earliest fossils from our part of the tree of life may have been more complex than has previously been thought.

Their findings have been published today, Sunday Jan 31, ahead of print in Advance Online Publication (AOP) of the science journal Nature on www.nature.com The work was funded by the Natural Environment Research Council (NERC).

Dr Rob Sansom, lead author of the paper explains: "Interpreting fossils is in some ways similar to forensic analysis – we gather all the available clues to put together a scientific reconstruction of something that happened in the past. Unlike forensics, however, we are dealing with life from millions of years ago, and we are less interested in understanding the cause or the time of death. What we want to get at is what an animal was like before it died and, as with forensic analysis, knowing how the decomposition that took place after death altered the body provides important clues to its original anatomy."

This is something that palaeontologists sometimes overlook, according to Sansom, "probably because spending hundreds of hours studying the stinking carcasses of rotting fish is not something that appeals to everyone." But the rewards are worth the discomfort.

Fish-like fossils from half a billion years ago are recognised as being part of our evolutionary history because they possess characteristic anatomical features, such as a tail, eyes and the precursor of a backbone. Sansom continues: "It seems contradictory, but decomposition is an important part of the process by which animals become preserved and fossilized, so by knowing how these important anatomical features change as they rot, we are better able to correctly interpret the most ancient fossils representing the lowest branches of our part of the evolutionary tree."

"These fossils provide our only direct record of when and how our earliest vertebrate ancestors evolved" adds Dr Mark Purnell, one of the leaders of the study. "Did they appear suddenly, in an evolutionary explosion of complexity, or gradually over millions of years? What did they look like? – in what ways did they differ from their worm-like relatives and how did this set the stage for later evolutionary events? Answers to these fundamental questions - the how, when and why of our own origins - remain elusive because reading the earliest vertebrate fossil record is difficult."

The scarcity of branches in this part of the evolutionary tree could reflect rapid, explosive evolution or the simple fact that, because they lacked bones or teeth, the earliest vertebrates left few fossils.

This is the area in which Dr Sarah Gabbott, who with Purnell conceived the Leicester study, is an expert: "Only in the most exceptional circumstances do soft-tissues, such as eyes, muscles and guts, become fossilized, yet it is precisely such remains that we rely on for understanding our earliest evolutionary relatives: half-a-billion years ago it's pretty much all our ancestors had."

The results published today in Nature, show that some of the characteristic anatomical features of early vertebrate fossils have been badly affected by decomposition, and in some cases may have rotted away completely. Knowing how decomposition affected the fossils means our reconstructions of our earliest ancestors will be more scientifically accurate.

You can watch a video of rotting primitive fish here: http://www.youtube.com/watch?v=zKk1OFYDPEU

Dr Mark Purnell | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>