Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Structural ‘snapshots’ of a protein implicated in Alzheimer’s disease

New experiments reveal detailed physical features of a protein thought to exacerbate the pathology of Alzheimer’s disease

A recent study describes the structure of the active form of BACE1, which is an enzyme implicated in Alzheimer’s disease. BACE1 cleaves amyloid precursor protein (APP), thereby releasing amyloid â peptide (Aâ), the primary component of amyloid plaques found in the brains of patients with Alzheimer’s disease.

As amyloid plaques are thought by many to inflict brain cell damage that results in Alzheimer’s disease, efforts are under way to design drugs to inhibit the activity of BACE1. Complicating these efforts is the fact that BACE1 seems to cleave APP in vesicles called endosomes, which sport a pH much more acidic than that of other areas of the cell or the extracellular fluid.

Structures of several BACE1 complexes have been solved using a technique called x-ray crystallography, wherein structural information is gleaned from x-rays diffracted from crystallized versions of proteins. However, never before has a structural view of active BACE1 been available. In a paper recently published in Molecular and Cellular Biology, Nobuyuki Nukina and colleagues from the RIKEN Brain Science Institute in Wako and the RIKEN SPring-8 Center in Harima present and analyze crystals of active BACE11.

To identify conditions in which crystallized BACE1 is active, the researchers soaked BACE1 crystals in acidic (pH 4.0, 4.5 and 5.0) and neutral (pH 7.0) solutions, together with synthetic APP peptides engineered to fluoresce after cleavage. In agreement with data localizing BACE1 activity to acidic endosomes, crystallized BACE1 cleaved APP at acidic but not neutral pH.

Comparative analyses revealed substantial differences in the shape of BACE1 crystals soaked in acidic and neutral solutions, suggesting that BACE1 undergoes structural rearrangements during activation (Vid. 1). Most notable was the position of the ‘flap’ covering the active site of BACE1, which was open and closed in acidic and neutral crystals, respectively. Also observed were marked changes in the shape of the BACE1 site at which the substrate—in this case, APP—binds.

Binding of a water molecule—thought to be important in the chemical reaction through which BACE1 cleaves APP—became weaker as the pH was lowered. Whether BACE1 exists as a mix of hydrated active and dehydrated inactive forms in endosomes remains unclear.

These findings highlight the importance of considering environmental factors such as pH in structure-based design of enzyme inhibitors. “The structure of the active form of BACE1 identified here should be used for developing drugs to regulate Aâ production,” says Nukina.

1.Shimizu, H., Tosaki, A., Kaneko, K., Hisano, T., Sakurai, T. & Nukina, N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid â protein production. Molecular and Cellular Biology 28, 3663–3671 (2008).

Saeko Okada | ResearchSEA
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>