Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger early reading skills predict higher intelligence later

24.07.2014

A new study of identical twins has found that early reading skill might positively affect later intellectual abilities. The study, in the journal Child Development, was conducted by researchers at the University of Edinburgh and King's College London.

"Since reading is an ability that can be improved, our findings have implications for reading instruction," according to Stuart J. Ritchie, research fellow in psychology at the University of Edinburgh, who led the study. "Early remediation of reading problems might aid not only the growth of literacy, but also more general cognitive abilities that are of critical importance across the lifespan."

Researchers looked at 1,890 identical twins who were part of the Twins Early Development Study, an ongoing longitudinal study in the United Kingdom whose participants were representative of the population as a whole.

They examined scores from tests of reading and intelligence taken when the twins were 7, 9, 10, 12, and 16. Using a statistical model, they tested whether differences in reading ability between each pair of twins were linked to later differences in intelligence, taking into account earlier differences in intelligence.

Because each pair of identical twins shared all their genes as well as a home environment, any differences between them had to be because of experiences that the twins didn't share, such as a particularly effective teacher or a group of friends that encouraged reading.

The researchers found that earlier differences in reading between the twins were linked to later differences in intelligence. Reading was associated not only with measures of verbal intelligence (such as vocabulary tests) but with measures of nonverbal intelligence as well (such as reasoning tests).

The differences in reading that were linked to differences in later intelligence were present by age 7, which may indicate that even early reading skills affect intellectual development.

"If, as our results imply, reading causally influences intelligence, the implications for educators are clear," suggests Ritchie. "Children who don't receive enough assistance in learning to read may also be missing out on the important, intelligence-boosting properties of literacy."

Besides having implications for educational intervention, the study may address the question of why individual children from one family can score differently on intelligence tests, despite sharing genes, socioeconomic status, and the educational level and personality of parents with their siblings.

###

The study was funded by the UK Medical Research Council, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the European Research Council.

Summarized from Child Development, Does Learning to Read Improve Intelligence? A Longitudinal Multivariate Analysis in Identical Twins From Age 7 to 16 by Ritchie, SJ, Bates, TC (University of Edinburgh), and Plomin, R (King's College London).

Copyright 2014 The Society for Research in Child Development, Inc. All rights reserved.

Hannah Klein | Eurek Alert!
Further information:
http://www.srcd.org/

Further reports about: Development Longitudinal Society Twins differences genes

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>