Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stronger early reading skills predict higher intelligence later

24.07.2014

A new study of identical twins has found that early reading skill might positively affect later intellectual abilities. The study, in the journal Child Development, was conducted by researchers at the University of Edinburgh and King's College London.

"Since reading is an ability that can be improved, our findings have implications for reading instruction," according to Stuart J. Ritchie, research fellow in psychology at the University of Edinburgh, who led the study. "Early remediation of reading problems might aid not only the growth of literacy, but also more general cognitive abilities that are of critical importance across the lifespan."

Researchers looked at 1,890 identical twins who were part of the Twins Early Development Study, an ongoing longitudinal study in the United Kingdom whose participants were representative of the population as a whole.

They examined scores from tests of reading and intelligence taken when the twins were 7, 9, 10, 12, and 16. Using a statistical model, they tested whether differences in reading ability between each pair of twins were linked to later differences in intelligence, taking into account earlier differences in intelligence.

Because each pair of identical twins shared all their genes as well as a home environment, any differences between them had to be because of experiences that the twins didn't share, such as a particularly effective teacher or a group of friends that encouraged reading.

The researchers found that earlier differences in reading between the twins were linked to later differences in intelligence. Reading was associated not only with measures of verbal intelligence (such as vocabulary tests) but with measures of nonverbal intelligence as well (such as reasoning tests).

The differences in reading that were linked to differences in later intelligence were present by age 7, which may indicate that even early reading skills affect intellectual development.

"If, as our results imply, reading causally influences intelligence, the implications for educators are clear," suggests Ritchie. "Children who don't receive enough assistance in learning to read may also be missing out on the important, intelligence-boosting properties of literacy."

Besides having implications for educational intervention, the study may address the question of why individual children from one family can score differently on intelligence tests, despite sharing genes, socioeconomic status, and the educational level and personality of parents with their siblings.

###

The study was funded by the UK Medical Research Council, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the European Research Council.

Summarized from Child Development, Does Learning to Read Improve Intelligence? A Longitudinal Multivariate Analysis in Identical Twins From Age 7 to 16 by Ritchie, SJ, Bates, TC (University of Edinburgh), and Plomin, R (King's College London).

Copyright 2014 The Society for Research in Child Development, Inc. All rights reserved.

Hannah Klein | Eurek Alert!
Further information:
http://www.srcd.org/

Further reports about: Development Longitudinal Society Twins differences genes

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>