Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke impairs learning also in remote brain regions; first success with new therapeutic approach

25.08.2011
Stroke patients often have difficulties with re-learning simple skills such as walking or talking, and the causes are still unknown.

In a new study, researchers from the Bernstein Network and the Universities of Göttingen and Jena now show that a stroke even affects the learning ability of remote brain areas. Learning processes in the visual system of mice were impaired, in some cases even for weeks. The scientists conclude that plastic brain changes are modulated by networks far bigger than previously assumed. By administration of anti-inflammatory drugs, some of the networks were able to regain their learning ability.

In Germany alone, every year some 200,000 people suffer from strokes. It is still not understood why the affected subjects often find it so difficult to relearn everyday abilities. There are still debates about the best starting time for therapy and the best approach towards medication. Scientists have long observed that the localized blood flow disturbance can also affect distant brain areas. Now scientists led by Professor Siegrid Löwel and Professor Otto Witte have examined the effects of a local stroke on neuronal plasticity in the visual system of mice as part of the “Visual Learning” project of the Bernstein Focus: Neuronal Basis of Learning.

Closing one eye in healthy animals leads to an increase in the visual acuity of the remaining eye, and both hemispheres process information from the open eye more intensely. “We have shown that the brain loses this ability after a stroke,” says Franziska Greifzu, PhD student in the laboratory of Prof. Siegrid Löwel, a neurobiologist at the Bernstein Focus Neurotechnology and the University of Göttingen, and head of the study. For the investigation, a stroke was induced in an area of the cerebral cortex that has no known effect on the visual system. Closing one eye immediately after the stroke resulted in the mouse brain being unable to normally adapt to the new situation; it had lost its ability to learn. Two weeks after the brain damage, the ability to adapt was partly regenerated.

The researchers examined whether inflammation could be responsible for this compromised learning. Therefore, they treated the animals immediately after the stroke with an anti-inflammatory drug. The result was that the treated animals developed, as with healthy animals, an increased visual acuity of the open eye. “The impaired learning ability after a stroke could be rescued to normal levels by use of anti-inflammatory drugs”, explains Witte, a neurologist at the University Hospital of Jena.

How the damaged area of the brain affects the visual system is still unclear. “There are obviously a lot more interactions between brain areas than we know and usually test experimentally,” says Löwel. Now the scientists want to examine more closely what changes a stroke entails on the cellular level and how learning ability can be completely restored. The results were published in the renowned scientific journal PNAS.

The project “Visual Learning” of the Bernstein Focus: Neuronal Basis of Learning is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Greifzu et al. (2011): Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. PNAS, published ahead of print August 24, 2011, doi:10.1073/pnas.1016458108.
For further information please contact:
Prof. Dr. Siegrid Löwel
sloewel@gwdg.de
Systems Neuroscience Group
Bernstein Focus: Neurotechnology (BFNT) and
J.F. Blumenbach Institute of Zoology and Anthropology
Göttingen University
Von-Siebold-Str. 4
37073 Göttingen
Germany
Phone +49 (0) 551 3920161/60

Johannes Faber | idw
Further information:
http://www.nncn.de/
http://www.uni-goettingen.de/
http://www.uni-jena.de/

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>