Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke-fighting drug offers potential treatment for traumatic brain injury

08.10.2014

The only drug currently approved for treatment of stroke's crippling effects shows promise, when administered as a nasal spray, to help heal similar damage in less severe forms of traumatic brain injury.

In the first examination of its kind, researchers Ye Xiong, Ph.D, Zhongwu Liu, Ph.D., and Michael Chopp, Ph.D., Scientific Director of the Henry Ford Neuroscience Institute, found in animal studies that the brain's limited ability to repair itself after trauma can be enhanced when treated with the drug tPA, or tissue plasminogen activator.

"Using this novel procedure in our earlier stroke studies, we found significant improvement in neurological function," said Michael Chopp, Ph.D., scientific director of the Henry Ford Neuroscience Institute. "So we essentially repeated the experiment on lab rats with subacute traumatic brain injury, and with similar remarkable results.

"As in stroke treated intra-nasally with tPA, our subjects showed greatly improved functional outcome and rewiring of the cortical spinal tract."

The new study was recently published in the Public Library of Science's peer-reviewed online journal PLOS ONE.

Commonly called a "clot-buster," tPA is the only FDA-approved treatment for acute ischemic stroke.

Acute ischemic stroke occurs when oxygen-rich blood flow to the brain is blocked by a clot. Resulting damage to oxygen-starved brain cells can lead to physical impairment, mental disabilities and sometimes death.

In the case of traumatic brain injury, damage is due to a violent blow or other external assault.

It has been known for some time that stroke damage can be reduced if tPA is given intravenously within 4.5 hours. But tPA administered through the bloodstream also has potentially harmful side effects, including swelling of the brain and hemorrhage.

More recently, however, Henry Ford researchers found that the effective treatment window could be extended to as much as two weeks for lab rats dosed with tPA in a nasal spray, while avoiding the harmful side effects of intravenous injection.

Although scientists do not yet fully understand how it works, earlier research has shown that drugs administered through the nose directly target both the brain and spinal cord.

Traumatic brain injury is a leading cause of death and disability throughout the world. While the new Henry Ford study offers hope of a drug treatment, so far no effective pharmacological therapy is available.

These most recent findings suggest that tPA has the potential to be a noninvasive treatment for subacute traumatic brain injury, helping the brain restore function to damaged cells.

The researchers cautioned that further animal studies will be required to discover the best dose and the best time window for optimal intranasal treatment.

###

Funding: National Institute of Neurological Disorders and Stroke RO1 NS062002 (YX), and National Institute on Aging RO1 AG037506 (MC).

Dwight Angell | Eurek Alert!
Further information:
http://www.henryford.com/

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>