Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stroke-fighting drug offers potential treatment for traumatic brain injury


The only drug currently approved for treatment of stroke's crippling effects shows promise, when administered as a nasal spray, to help heal similar damage in less severe forms of traumatic brain injury.

In the first examination of its kind, researchers Ye Xiong, Ph.D, Zhongwu Liu, Ph.D., and Michael Chopp, Ph.D., Scientific Director of the Henry Ford Neuroscience Institute, found in animal studies that the brain's limited ability to repair itself after trauma can be enhanced when treated with the drug tPA, or tissue plasminogen activator.

"Using this novel procedure in our earlier stroke studies, we found significant improvement in neurological function," said Michael Chopp, Ph.D., scientific director of the Henry Ford Neuroscience Institute. "So we essentially repeated the experiment on lab rats with subacute traumatic brain injury, and with similar remarkable results.

"As in stroke treated intra-nasally with tPA, our subjects showed greatly improved functional outcome and rewiring of the cortical spinal tract."

The new study was recently published in the Public Library of Science's peer-reviewed online journal PLOS ONE.

Commonly called a "clot-buster," tPA is the only FDA-approved treatment for acute ischemic stroke.

Acute ischemic stroke occurs when oxygen-rich blood flow to the brain is blocked by a clot. Resulting damage to oxygen-starved brain cells can lead to physical impairment, mental disabilities and sometimes death.

In the case of traumatic brain injury, damage is due to a violent blow or other external assault.

It has been known for some time that stroke damage can be reduced if tPA is given intravenously within 4.5 hours. But tPA administered through the bloodstream also has potentially harmful side effects, including swelling of the brain and hemorrhage.

More recently, however, Henry Ford researchers found that the effective treatment window could be extended to as much as two weeks for lab rats dosed with tPA in a nasal spray, while avoiding the harmful side effects of intravenous injection.

Although scientists do not yet fully understand how it works, earlier research has shown that drugs administered through the nose directly target both the brain and spinal cord.

Traumatic brain injury is a leading cause of death and disability throughout the world. While the new Henry Ford study offers hope of a drug treatment, so far no effective pharmacological therapy is available.

These most recent findings suggest that tPA has the potential to be a noninvasive treatment for subacute traumatic brain injury, helping the brain restore function to damaged cells.

The researchers cautioned that further animal studies will be required to discover the best dose and the best time window for optimal intranasal treatment.


Funding: National Institute of Neurological Disorders and Stroke RO1 NS062002 (YX), and National Institute on Aging RO1 AG037506 (MC).

Dwight Angell | Eurek Alert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>