Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strobe Eyewear Training Improves Visual Memory

24.07.2012
Stroboscopic training, performing a physical activity while using eyewear that simulates a strobe-like experience, has been found to increase visual short-term memory retention, and the effects lasted 24 hours.

Participants in a Duke University study engaged in physical activities, such as playing catch, while using either specialized eyewear that limits vision to only brief snapshots or while using eyewear with clear lenses that provides uninterrupted vision. Participants completed a computer-based visual memory test before and after the physical activities. Research participants came from the Duke community.

Many were recruited from University-organized sports teams, including varsity-level players. The study found that participants who trained with the strobe eyewear gained a boost in visual memory abilities.

Participants completed a memory test that required them to note the identity of eight letters of the alphabet that were briefly displayed on a computer screen. After a variable delay, participants were asked to recall one of the eight letters. On easy-level trials, the recall prompt came immediately after the letters disappeared, but on more difficult trials, the prompt came as late as 2.5 seconds following the display. Because participants did not know which letter they would be asked to recall, they had to retain all of the items in memory.

“Humans have a memory buffer in their brain that keeps information alive for a certain short-lived period,” said Greg Appelbaum, assistant professor of psychiatry at Duke University and first author of the study. “Wearing the strobe eyewear during the physical training seemed to boost the ability to retain information in this buffer.”

The strobe eyewear disrupts vision by only allowing the user to see glimpses of the world. The user must adjust their visual processing in order to perform normally, and this adjustment produces a lingering benefit; once participants removed the strobe eyewear, there was an observed boost in their visual memory retention, which was found to last 24 hours.

Earlier work by Appelbaum and the project’s senior researcher, Stephen Mitroff, had shown that stroboscopic training improves visual perception, including the ability to detect subtle motion cues and the processing of briefly presented visual information. Yet the earlier study had not determined how long the benefits might last.

“Our earlier work on stroboscopic training showed that it can improve perceptual abilities, but we don’t know exactly how,” says Mitroff, associate professor of psychology & neuroscience and member of the Duke Institute for Brain Sciences. “This project takes a big step by showing that these improved perceptual abilities are driven, at least in part, by improvements in visual memory.”

“Improving human cognition is an important goal with so many benefits,” said Appelbaum, also a member of the Duke Institute for Brain Sciences. “Interestingly, our findings demonstrate one way in which visual experience has the capacity to improve cognition.”

Participants for the study came from the 2010-2011 Duke University men’s and women’s varsity soccer teams, Duke’s 2010-2011 men’s basketball team and members of the general Duke community. Mitroff reported that participants had little or no trouble with the stroboscopic training, and several participants later returned to inquire about how they could be involved as research assistants.

The research was supported by Nike SPARQ Sensory Performance, who designed the eyewear and is marketing it as Nike SPARQ Vapor Strobe. The study appears online July 19 in Attention, Perception, & Psychophysics.

CITATION – “Stroboscopic visual training improves information encoding in short-term memory,” L. Gregory Appelbaum, Matthew S. Cain, Julia E. Schroeder, Elise F. Darling, and Stephen R. Mitroff, Attention, Perception, & Psychophysics, July 2012. DOI 10.3758/s13414-012-0344-6

Julie Rhodes | EurekAlert!
Further information:
http://www.duke.edu
http://dibs.duke.edu/news/press-releases/2012/07/23/strobe-eyewear-training-improves-visual-memory/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>