Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strobe Eyewear Training Improves Visual Memory

Stroboscopic training, performing a physical activity while using eyewear that simulates a strobe-like experience, has been found to increase visual short-term memory retention, and the effects lasted 24 hours.

Participants in a Duke University study engaged in physical activities, such as playing catch, while using either specialized eyewear that limits vision to only brief snapshots or while using eyewear with clear lenses that provides uninterrupted vision. Participants completed a computer-based visual memory test before and after the physical activities. Research participants came from the Duke community.

Many were recruited from University-organized sports teams, including varsity-level players. The study found that participants who trained with the strobe eyewear gained a boost in visual memory abilities.

Participants completed a memory test that required them to note the identity of eight letters of the alphabet that were briefly displayed on a computer screen. After a variable delay, participants were asked to recall one of the eight letters. On easy-level trials, the recall prompt came immediately after the letters disappeared, but on more difficult trials, the prompt came as late as 2.5 seconds following the display. Because participants did not know which letter they would be asked to recall, they had to retain all of the items in memory.

“Humans have a memory buffer in their brain that keeps information alive for a certain short-lived period,” said Greg Appelbaum, assistant professor of psychiatry at Duke University and first author of the study. “Wearing the strobe eyewear during the physical training seemed to boost the ability to retain information in this buffer.”

The strobe eyewear disrupts vision by only allowing the user to see glimpses of the world. The user must adjust their visual processing in order to perform normally, and this adjustment produces a lingering benefit; once participants removed the strobe eyewear, there was an observed boost in their visual memory retention, which was found to last 24 hours.

Earlier work by Appelbaum and the project’s senior researcher, Stephen Mitroff, had shown that stroboscopic training improves visual perception, including the ability to detect subtle motion cues and the processing of briefly presented visual information. Yet the earlier study had not determined how long the benefits might last.

“Our earlier work on stroboscopic training showed that it can improve perceptual abilities, but we don’t know exactly how,” says Mitroff, associate professor of psychology & neuroscience and member of the Duke Institute for Brain Sciences. “This project takes a big step by showing that these improved perceptual abilities are driven, at least in part, by improvements in visual memory.”

“Improving human cognition is an important goal with so many benefits,” said Appelbaum, also a member of the Duke Institute for Brain Sciences. “Interestingly, our findings demonstrate one way in which visual experience has the capacity to improve cognition.”

Participants for the study came from the 2010-2011 Duke University men’s and women’s varsity soccer teams, Duke’s 2010-2011 men’s basketball team and members of the general Duke community. Mitroff reported that participants had little or no trouble with the stroboscopic training, and several participants later returned to inquire about how they could be involved as research assistants.

The research was supported by Nike SPARQ Sensory Performance, who designed the eyewear and is marketing it as Nike SPARQ Vapor Strobe. The study appears online July 19 in Attention, Perception, & Psychophysics.

CITATION – “Stroboscopic visual training improves information encoding in short-term memory,” L. Gregory Appelbaum, Matthew S. Cain, Julia E. Schroeder, Elise F. Darling, and Stephen R. Mitroff, Attention, Perception, & Psychophysics, July 2012. DOI 10.3758/s13414-012-0344-6

Julie Rhodes | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>