Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stress Changes How People Make Decisions

Trying to make a big decision while you’re also preparing for a scary presentation?
You might want to hold off on that. Feeling stressed changes how people weigh risk and reward. A new article published in Current Directions in Psychological Science, a journal of the Association for Psychological Science, reviews how, under stress, people pay more attention to the upside of a possible outcome.

It’s a bit surprising that stress makes people focus on the way things could go right, says Mara Mather of the University of Southern California, who cowrote the new review paper with Nichole R. Lighthall. “This is sort of not what people would think right off the bat,” Mather says. “Stress is usually associated with negative experiences, so you’d think, maybe I’m going to be more focused on the negative outcomes.”

But researchers have found that when people are put under stress—by being told to hold their hand in ice water for a few minutes, for example, or give a speech—they start paying more attention to positive information and discounting negative information. “Stress seems to help people learn from positive feedback and impairs their learning from negative feedback,” Mather says.

This means when people under stress are making a difficult decision, they may pay more attention to the upsides of the alternatives they’re considering and less to the downsides. So someone who’s deciding whether to take a new job and is feeling stressed by the decision might weigh the increase in salary more heavily than the worse commute.

The increased focus on the positive also helps explain why stress plays a role in addictions, and people under stress have a harder time controlling their urges. “The compulsion to get that reward comes stronger and they’re less able to resist it,” Mather says. So a person who’s under stress might think only about the good feelings they’ll get from a drug, while the downsides shrink into the distance.

Stress also increases the differences in how men and women think about risk. When men are under stress, they become even more willing to take risks; when women are stressed, they get more conservative about risk. Mather links this to other research that finds, at difficult times, men are inclined toward fight-or-flight responses, while women try to bond more and improve their relationships.

“We make all sorts of decisions under stress,” Mather says. “If your kid has an accident and ends up in the hospital, that’s a very stressful situation and decisions need to be made quickly.” And, of course, big decisions can be sources of stress all by themselves and just make the situation worse. “It seems likely that how much stress you’re experiencing will affect the way you’re making the decision.”

For more information about this study, please contact: Mara Mather at E-mail:

Current Directions in Psychological Science, a journal of the Association for Psychological Science, publishes concise reviews on the latest advances in theory and research spanning all of scientific psychology and its applications. For a copy of "Risk and Reward Are Processed Differently in Decisions Made Under Stress" and access to other Current Directions in Psychological Science research findings, please contact Lucy Hyde at 202-293-9300 or

Lucy Hyde | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>