Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress hormone elevation is associated with working memory deficits in aging

18.06.2014

Animal study suggests that stress may accelerate age-related changes in the brain

 A new study published in the June 18 issue of The Journal of Neuroscience adds to a body of evidence suggesting stress may accelerate cognitive decline later in life. The study found that aged rats with high levels of the stress hormone corticosterone showed structural changes in the brain and short-term memory deficits.

While most people will experience some cognitive decline as they get older, the extent of these changes and how rapidly they progress varies greatly from one person to the next. Scientists are interested in understanding the factors that contribute to these differences. Research suggests that how the body responds to stress may be one of the factors influencing how the brain ages. Multiple animal studies have linked high levels of the stress hormone corticosterone (similar to the human stress hormone cortisol) with age-related structural and functional decline in the hippocampus, a region that plays a key role in long-term memory.

Jason J. Radley of the University of Iowa wanted to know whether exposure to high levels of corticosterone is associated with other changes in the brain and memory deficits. In the current study, he and others measured the amount of the stress hormone in the blood of young and old rats and examined cells in the prefrontal cortex, a region of the brain involved in short-term memory. The researchers found that older animals with high levels of the stress hormone had fewer connections between prefrontal cortex cells than the older animals with lower levels of the hormone. In contrast, prefrontal cortex cells appeared similar in younger animals regardless of stress hormone levels.

"Older animals with higher levels of stress hormones in their blood have 'older' frontal cortexes than animals with less stress hormones," explained Stanford University professor Robert Sapolsky, PhD, an expert on the damaging effects of long-term stress who was not involved with this study. "Thus, stress may act as a pacemaker of aging in this key brain region."

Older rats with higher levels of stress hormone displayed a 20 percent reduction in the density of dendritic spines (the small protrusions on neurons that come into close contact with other cells to form synapses, the connections between cells) relative to age-matched rats with less stress hormone.

The researchers also compared how the young and old rats performed on a simple working memory task, where the animals had to remember which arm of a two-arm maze contained a food reward following varying periods of delay. Older animals with higher levels of corticosterone made more errors when attempting to predict the location of the reward than age-matched animals with less of the stress hormone after a brief period of delay.

"These findings are not meant to indicate that high stress hormones are the only factor in determining the decline of mental abilities during aging," Radley cautioned. "Nonetheless, this study suggests that the effects of these stress hormones on the brain may be much more widespread than we previously thought."

###

This research was funded by the National Institute of Mental Health.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of nearly 40,000 basic scientists and clinicians who study the brain and nervous system. Radley can be reached at jason-radley@uiowa.edu. More information on aging, stress, and memory can be found on BrainFacts.org.

Emily Ortman | Eurek Alert!

Further reports about: Neuroscience animals corticosterone deficits hormones levels rats

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>