Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress hormone elevation is associated with working memory deficits in aging

18.06.2014

Animal study suggests that stress may accelerate age-related changes in the brain

 A new study published in the June 18 issue of The Journal of Neuroscience adds to a body of evidence suggesting stress may accelerate cognitive decline later in life. The study found that aged rats with high levels of the stress hormone corticosterone showed structural changes in the brain and short-term memory deficits.

While most people will experience some cognitive decline as they get older, the extent of these changes and how rapidly they progress varies greatly from one person to the next. Scientists are interested in understanding the factors that contribute to these differences. Research suggests that how the body responds to stress may be one of the factors influencing how the brain ages. Multiple animal studies have linked high levels of the stress hormone corticosterone (similar to the human stress hormone cortisol) with age-related structural and functional decline in the hippocampus, a region that plays a key role in long-term memory.

Jason J. Radley of the University of Iowa wanted to know whether exposure to high levels of corticosterone is associated with other changes in the brain and memory deficits. In the current study, he and others measured the amount of the stress hormone in the blood of young and old rats and examined cells in the prefrontal cortex, a region of the brain involved in short-term memory. The researchers found that older animals with high levels of the stress hormone had fewer connections between prefrontal cortex cells than the older animals with lower levels of the hormone. In contrast, prefrontal cortex cells appeared similar in younger animals regardless of stress hormone levels.

"Older animals with higher levels of stress hormones in their blood have 'older' frontal cortexes than animals with less stress hormones," explained Stanford University professor Robert Sapolsky, PhD, an expert on the damaging effects of long-term stress who was not involved with this study. "Thus, stress may act as a pacemaker of aging in this key brain region."

Older rats with higher levels of stress hormone displayed a 20 percent reduction in the density of dendritic spines (the small protrusions on neurons that come into close contact with other cells to form synapses, the connections between cells) relative to age-matched rats with less stress hormone.

The researchers also compared how the young and old rats performed on a simple working memory task, where the animals had to remember which arm of a two-arm maze contained a food reward following varying periods of delay. Older animals with higher levels of corticosterone made more errors when attempting to predict the location of the reward than age-matched animals with less of the stress hormone after a brief period of delay.

"These findings are not meant to indicate that high stress hormones are the only factor in determining the decline of mental abilities during aging," Radley cautioned. "Nonetheless, this study suggests that the effects of these stress hormones on the brain may be much more widespread than we previously thought."

###

This research was funded by the National Institute of Mental Health.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of nearly 40,000 basic scientists and clinicians who study the brain and nervous system. Radley can be reached at jason-radley@uiowa.edu. More information on aging, stress, and memory can be found on BrainFacts.org.

Emily Ortman | Eurek Alert!

Further reports about: Neuroscience animals corticosterone deficits hormones levels rats

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>