Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress Hormone Blocks Testosterone’s Effects

01.10.2010
High levels of the stress hormone cortisol play a critical role in blocking testosterone's influence on competition and domination, according to new psychology research at The University of Texas at Austin.

The study, led by Robert Josephs, professor of psychology at The University of Texas at Austin, and Pranjal Mehta, assistant professor of psychology at the University of Oregon, is the first to show that two hormones—testosterone and cortisol—jointly regulate dominance.

The findings, available online in Hormones and Behavior, show that when cortisol—a hormone released in the body in response to threat—increases, the body is mobilized to escape danger, rather than respond to any influence that testosterone is having on behavior.

The study provides new evidence that hormonal axes (complex feedback networks between hormones and particular brain areas that regulate testosterone levels and cortisol) work against each other to regulate dominant and competitive behaviors.

"It makes good adaptive sense that testosterone's behavioral influence during an emergency situation gets blocked because engaging in behaviors that are encouraged by testosterone, such as mating, competition and aggression, during an imminent survival situation could be fatal," Josephs said. "On the other hand, fight or flight behaviors encouraged by cortisol become more likely during an emergency situation when cortisol levels are high. Thus, it makes sense that the hormonal axes that regulate testosterone levels and cortisol levels are antagonistic."

As part of the study, the researchers measured hormone levels of saliva samples provided by 57 subjects. The respondents participated in a one-on-one competition and were given the opportunity to compete again after winning or losing. Among those who lost, 100 percent of the subjects with high testosterone and low cortisol requested a rematch to recapture their lost status. However, 100 percent of participants with high testosterone and high cortisol declined to compete again. All subjects who declined a rematch experienced a significant drop in testosterone after defeat, which may help to explain their unwillingness to compete again, Josephs said.

The researchers suggest these findings reveal new insights into the physiological effects of stress and how they may play a role in fertility problems. According to research, chronically elevated cortisol levels can produce impotence and loss of libido by inhibiting testosterone production in men. In women, chronically high levels of cortisol can produce severe fertility problems and result in an abnormal menstrual cycle.

"When cortisol levels remain elevated, as is the case with so many people who are under constant stress, the ability to reproduce can suffer greatly," Josephs said. "However, these effects of cortisol in both men and women are reversed when stress levels go down."

Jessica Sinn, College of Liberal Arts, 512-471-2404; Robert Josephs, Department of Psychology, College of Liberal Arts, 512-471-9788.

Jessica Sinn | Newswise Science News
Further information:
http://www.utexas.edu/opa/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>