Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress, Anxiety Both Boon and Bane to Brain

20.01.2011
A cold dose of fear lends an edge to the here-and-now — say, when things go bump in the night.

“That edge sounds good. It sounds adaptive. It sounds like perception is enhanced and that it can keep you safe in the face of danger,” says Alexander Shackman, a researcher at the University of Wisconsin-Madison.

But it sounds like there’s also a catch, one that Shackman and his coauthors — including Richard Davidson, UW-Madison psychology and psychiatry professor — described in the Jan. 19 Journal of Neuroscience.

“It makes us more sensitive to our external surroundings as a way of learning where or what a threat may be, but interferes with our ability to do more complex thinking,” Davidson says.

Faced with the possibility of receiving an unpleasant electric shock, the study’s subjects showed enhanced activity in brain circuits responsible for taking in visual information, but a muted signal in circuitry responsible for evaluating that information. Remove the threat of shock (and thus the stress and anxiety) and the effect is reversed: less power for vigilance, more power for strategic decision-making.

The shift in electrical activity in the brain, captured by a dense mesh of sensors placed on the scalp, may be the first biological description of a paradox in experimental psychology.

It has long been known that imminent danger can enhance the ability to detect faint stimuli in the environment, such as the crackle of a leaf signaling the approach of a predator. But it is equally clear that the stress and anxiety aroused by a threat can profoundly disrupt the ability to think clearly and perform more complex “executive” tasks.

“In the last few years, theorists have hypothesized that this paradox might reflect several systems working in conjunction: one responsible for the rapid detection of external stimuli, the other responsible for the slower, more reflective evaluation of that incoming information,” Shackman says. “Stress upsets the balance of those systems.”

In fact, as the senses go into overdrive, they are probably confounding the rest of the brain all the more.

“Your ability to do more complex tasks is disrupted just as the amount of information you’re receiving through your eyes and ears is enhanced,” Shackman says. “You’re having trouble focusing on the information coming in, but your brain is taking in more and more potentially irrelevant information. You can have a viscous feedback loop, a sort of double-whammy effect.”

The resulting confusion favors quick, reflexive actions, the “survival instincts” often mentioned by trauma survivors — Noise? RUN! — in a way that was likely adaptive in the dangerous environments in which the ancestors to modern humans evolved.

“In our evolutionary past, the dangers we faced were really survival-threatening,” Davidson says. “That’s not so much the case now. Because of the nature of our brains, we can use our neural capacity to create our own internal danger. We can worry about the future and ruminate about the past.”

Either one is likely to present a real hurdle to effective decision-making under stress.

“This is part of a growing body of evidence showing that stress does have important consequences for the brain, not just something that arouses the body — tension in your muscles or butterflies in the stomach,” says Davidson, who studies the effects of meditation as director of UW-Madison’s Center for Investigating Healthy minds.

“One of the things we would expect is that if we use an antidote like systematic meditation training to learn to control stress it would not just calm the body, but improve our ability to engage in complex analytical activity,” he says.

Jeffrey S. Maxwell of the U.S. Army Research Laboratory joined Shackman as lead author of the study, which was funded by the Department of Defense, National Institutes for Health and National Science Foundation.

Chris Barncard | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>