Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Storing seeds for a rainy day -- or in this case, a fire

01.06.2011
Study looks at how lodgepole pines protect against fire, mountain pine beetles infestation

As mountain pine beetles march across the forests of western North America, these insects may kill millions of pine trees during a single outbreak. A rise in overall temperatures over the past several years has increased the range of mountain pine beetles, resulting in an epidemic and possibly making this mountain pine beetle infestation the largest forest-insect blight to occur in North America.

Dr. Francois Teste and colleagues from the University of Alberta in Canada have been investigating the effect of mountain pine beetle outbreaks on lodgepole pines in British Columbia. Teste and colleagues have discovered that seeds from cones on the forest floor may provide a viable seed bank for lodgepole pine regeneration following forest destruction by mountain pine beetles. Their research is published in a recent issue of the American Journal of Botany (http://www.amjbot.org/content/98/4/630.full).

Lodgepole pines, a variety of the pine species Pinus contorta, are a serotinous species—the seeds are only released from the cones in response to specific environmental conditions, in this case fire, rather than at the time of seed maturation. The seed bank of lodgepole pines is found in closed cones, which generally are located in the canopy. Following a mountain pine beetle outbreak, dead trees with canopy cones may remain standing for 10 to 15 years. However, scientists have observed a considerable increase in closed cones on the forest floor due to an increase in branch breakage after tree death. The viability of these canopy and forest-floor seeds and the likelihood that they will be able to contribute to forest regeneration has not been known.

Using germination techniques, Teste and colleagues assessed the viability of seeds from closed cones from both the canopy and forest floor of stands of trees 3 years, 6 years, and 9 years after mountain pine beetle outbreaks. These researchers found that closed forest-floor cones had high germination capacity (over 80%), but this germination capacity dropped to 45% for cones that were partly open. Although canopy cones have a >90% germination capacity a year, on average, after cone maturation, germination capacity steeply declined after 15 years and dropped to 50% after 25 years.

"Closed resin-bounded cones typical of serotinous pines can maintain (up to about 10-15 years) viable seed on dead trees even if the cones are partly open and/or in the forest floor," Teste said, "but of course the germination capacity does slowly decline with time." This is the first study demonstrating that there is a viable forest-floor seed bank for a serotinous pine species.

The serotinous adaptation of lodgepole pines allows for the regeneration of forests decimated by fire, but may be a hindrance to forests destroyed by mountain pine beetles. Although seed in closed cones may be viable following a mountain pine beetle outbreak, it cannot contribute to forest regeneration unless it is released from the cone, a process that would generally be triggered by fire.

"We can only speculate that it is a potential source for future regeneration if a ground fire or site preparation resurfaces the cones," Teste stated regarding the forest-floor seed bank. Teste's future research may focus on the impact of fire after mountain pine beetle outbreaks, specifically whether fire can promote regeneration from buried cones.

"With novel disturbances emerges novel responses to maintain ecosystem stability," Teste said.

Teste, François P., Victor J. Lieffers, and Simon M. Landhäusser. (2011). Viability of forest floor and canopy seed banks in Pinus contorta var. latifolia (Pinaceae) forests after a mountain pine beetle outbreak. American Journal of Botany 98(4): 630-637. DOI: 10.3732/ajb.1000252

The full article in the link mentioned is available for no charge for 30 days following the date of this summary at http://www.amjbot.org/content/98/4/630.full. After this date, reporters may contact Richard Hund at ajb@botany.org for a copy of the article.

The Botanical Society of America (www.botany.org) is a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. It has published the American Journal of Botany (www.amjbot.org) for nearly 100 years. In 2009, the Special Libraries Association named the American Journal of Botany one of the Top 10 Most Influential Journals of the Century in the field of Biology and Medicine.

For further information, please contact the AJB staff at ajb@botany.org.

Richard Hund | EurekAlert!
Further information:
http://www.botany.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>