Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stop or Speed Through a Yellow Light? That Is the Question

09.06.2010
Engineering graduate student Zhixia Li was attracted to UC because of the real-world education and experience the university provides. In return, he’s headed a real-world project that every driver can relate to: the "yellow light dilemma." Are you, as a driver, more likely to stop or speed through a yellow light?

Transportation engineering PhD student Zhixia Li was attracted to the University of Cincinnati because of the real-world education and experience the university provides.

In return, he’s headed a real-world project that every driver can relate to. It’s a project on which he has presented and published nationally, and it looks at what he calls the “yellow light dilemma.” Are you, as a driver, more likely to stop or to speed through a yellow light?

Here’s what he found when conducting research, in cooperation with the Ohio Department of Transportation, at intersections in Akron, Cleves and Fairfield, Ohio: Certain factors make it more likely that you’ll opt to speed through an intersection rather than stop at the light.

The results of his research with his advisor Prof. Heng Wei, “Analysis of Drivers' Stopping Behaviors Associated with the Yellow Phase Dilemma Zone — An Empirical Study in Fairfield, OH,” will be presented at the 2010 American Society of Highway Engineers National Conference on June 9-13, 2010, in Cincinnati, at the Hilton Cincinnati Netherland Plaza.

So what are the factors that make us run the yellow? These include

Lane position: Drivers in the right lane are 1.6 times more likely to speed through a yellow light as compared to drivers in the left lane.
Type of vehicle: Drivers in heavy trucks are more likely to “pass through” a yellow light versus drivers of automobiles, SUVs, vans or pickup trucks.

Travel speed and speed limit: The greater the traveling speed of a vehicle at the onset of a yellow light, the more likely that vehicle is to pass through a yellow light. Another finding: the higher the posted speed limit, the more likely vehicles are to pass through a yellow light.

Timing of light: Yellow lights are typically set to persist between 3 to 5 seconds. Drivers coming upon an intersection where the yellow light persists longer are more likely to pass through the yellow light. For each “additional” second a yellow light persists, drivers are more than three times as likely to pass through an intersection. So, for example, a driver is more than three times as likely to pass through a yellow light set to persist for 5 seconds versus a yellow light set to persist for 4 seconds. Ditto for a yellow light that persists for 4 seconds versus a yellow light that persists for 3 seconds.

Li's research has won many awards, including the 2009 Institute of Transportation Engineers (ITE) Daniel B. Fambro Best Student Paper Award (one winner internationally); first place, 2009 ITE Great Lakes District Student Paper Competition (Great Lakes District includes Ohio, Indiana, Michigan, and West Virginia); and the 2009 Ohio Transportation Consortium (OTC) Best Graduate Student Paper Award.

This UC research will help traffic engineers consider and test safety and traffic efficiency measures, including the positioning of sensors that time traffic lights.

And it just might help drivers consider their own actions when in the yellow light dilemma zone.

Wendy Beckman | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Transportation stop traffic engineers traffic lights yellow light

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>