Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Would you stop eating out to lose weight?

10.01.2012
A study reveals that you don't have to

Going out to eat has become a major part of our culture. Frequently eating out and consuming high-calorie foods in large portions at restaurants can contribute to excess calorie intake and weight gain. However, a study in the January/February 2012 issue of the Journal of Nutrition Education and Behavior demonstrates that individuals can eat out and still lose weight.

Investigators from The University of Texas at Austin enrolled 35 healthy, perimenopausal women aged 40 to 59 years who eat out frequently. Participants took part in a 6-week program called Mindful Restaurant Eating, a weight-gain prevention intervention that helps develop the skills needed to reduce caloric and fat intake when eating out. The focus of the program was on preventing weight gain in this population, not weight loss. It is important to prevent weight gain in this population as increasing abdominal waist circumference from weight gain is greater during the perimenopausal years, which in turn increases the risk for cardiovascular disease and diabetes. Even though the focus was on weight maintenance, the researchers found that participants in the intervention group lost significantly more weight, had lower average daily caloric and fat intake, had increased diet related self-efficacy, and had fewer barriers to weight management when eating out.

Dr. Gayle M. Timmerman, PhD, RN, the principal investigator of this study states, "Although the intention of the intervention was weight maintenance and the majority of participants were not dieting with the intent to lose weight at the start of the study (69%), on average the intervention group lost 1.7 kg during 6 weeks. The number of times that participants ate out, as captured in the 3-day 24-hour recalls, did not significantly decrease from time 1 to time 2, indicating that participants were able to successfully manage their weight while continuing their usual, frequent eating-out patterns. Overall, the participants in the intervention group reduced their daily caloric intake by about 297 calories after completing the intervention, which would explain their weight loss. Only part of the calorie reduction (about 124 calories) can be accounted for during eating out, indicating that fewer calories were also consumed at home."

"Based on what we learned from this study, for those individuals who eat out frequently, developing the skills needed to eat out without gaining weight from the excess calories typically consumed at restaurants may be essential to long-term health," Dr. Timmerman concludes.

This study addresses the importance of developing creative solutions in preventing weight gain; developing restaurant eating skills to manage intake in the high risk restaurant food environment may be one of those solutions.

The article is "The Effect of a Mindful Restaurant Eating Intervention on Weight Management in Women," by Gayle M. Timmerman, PhD, RN and Adama Brown, PhD. It appears in the Journal of Nutrition Education and Behavior, Volume 44, Issue 1 (January/February 2012) published by Elsevier.

In an accompanying podcast, Gayle M. Timmerman, PhD, RN, discusses the results and implications of this study. It is available at www.jneb.org/content/podcast.

Francesca Costanzo | EurekAlert!
Further information:
http://www.elsevier.com
http://www.jneb.org/content/podcast

Further reports about: Eating Disorder Nutrition daily caloric lose weight weight gain weight loss

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>