Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cells aid muscle repair and strengthening after resistance exercise


A new study in mice reveals that mesenchymal (mezz-EN-chem-uhl) stem cells (MSCs) help rejuvenate skeletal muscle after resistance exercise.

By injecting MSCs into mouse leg muscles prior to several bouts of eccentric exercise (similar to the lengthening contractions performed during resistance training in humans that result in mild muscle damage), researchers were able to increase the rate of repair and enhance the growth and strength of those muscles in the exercising mice.

The findings, described in the journal Medicine and Science in Sports and Exercise, may one day lead to new interventions to combat age-related declines in muscle structure and function, said University of Illinois kinesiology and community health professor Marni Boppart, who led the research.

“We have an interest in understanding how muscle responds to exercise, and which cellular components contribute to the increase in repair and growth with exercise,” she said. “But the primary goal of our lab really is to have some understanding of how we can rejuvenate the aged muscle to prevent the physical disability that occurs with age, and to increase quality of life in general as well.”

MSCs occur naturally in the body and may differentiate into several different cell types. They form part of the stroma, the connective tissue that supports organs and other tissues.

MSCs also excrete growth factors and, according to the new study, stimulate muscle precursor cells, called satellite cells, to expand inside the tissue and contribute to repair following injury. Once present and activated, satellite cells actually fuse to the damaged muscle fibers and form new fibers to reconstruct the muscle and enhance strength.

“Satellite cells are a primary target for the rejuvenation of aged muscle, since activation becomes increasingly impaired and recovery from injury is delayed over the lifespan,” Boppart said. “MSC transplantation may provide a viable solution to reawaken the aged satellite cell.”

Satellite cells themselves will likely never be used therapeutically to enhance repair or strength in young or aged muscle “because they cause an immune response and rejection within the tissue,” Boppart said. But MSCs are “immunoprivileged,” meaning that they can be transplanted from one individual to another without sparking an immune response.

“Skeletal muscle is a very complex organ that is highly innervated and vascularized, and unfortunately all of these different tissues become dysfunctional with age,” Boppart said. “Therefore, development of an intervention that can heal multiple tissues is ideally required to reverse age-related declines in muscle mass and function. MSCs, because of their ability to repair a variety of different tissue types, are perfectly suited for this task.”

The Ellison Medical Foundation and the National Science Foundation supported this work.

Editor's note: To reach Marni Boppart, call 217-244-1459; email

The paper, “Mesenchymal stem cells augment the adaptive response to eccentric exercise,” is in press and is available online or from the U. of I. News Bureau.

Diana Yates | Eurek Alert!
Further information:

Further reports about: MSCs Urbana-Champaign age-related exercise fibers immune injury muscles repair resistance satellite

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>