Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells aid muscle repair and strengthening after resistance exercise

22.07.2014

A new study in mice reveals that mesenchymal (mezz-EN-chem-uhl) stem cells (MSCs) help rejuvenate skeletal muscle after resistance exercise.

By injecting MSCs into mouse leg muscles prior to several bouts of eccentric exercise (similar to the lengthening contractions performed during resistance training in humans that result in mild muscle damage), researchers were able to increase the rate of repair and enhance the growth and strength of those muscles in the exercising mice.

The findings, described in the journal Medicine and Science in Sports and Exercise, may one day lead to new interventions to combat age-related declines in muscle structure and function, said University of Illinois kinesiology and community health professor Marni Boppart, who led the research.

“We have an interest in understanding how muscle responds to exercise, and which cellular components contribute to the increase in repair and growth with exercise,” she said. “But the primary goal of our lab really is to have some understanding of how we can rejuvenate the aged muscle to prevent the physical disability that occurs with age, and to increase quality of life in general as well.”

MSCs occur naturally in the body and may differentiate into several different cell types. They form part of the stroma, the connective tissue that supports organs and other tissues.

MSCs also excrete growth factors and, according to the new study, stimulate muscle precursor cells, called satellite cells, to expand inside the tissue and contribute to repair following injury. Once present and activated, satellite cells actually fuse to the damaged muscle fibers and form new fibers to reconstruct the muscle and enhance strength.

“Satellite cells are a primary target for the rejuvenation of aged muscle, since activation becomes increasingly impaired and recovery from injury is delayed over the lifespan,” Boppart said. “MSC transplantation may provide a viable solution to reawaken the aged satellite cell.”

Satellite cells themselves will likely never be used therapeutically to enhance repair or strength in young or aged muscle “because they cause an immune response and rejection within the tissue,” Boppart said. But MSCs are “immunoprivileged,” meaning that they can be transplanted from one individual to another without sparking an immune response.

“Skeletal muscle is a very complex organ that is highly innervated and vascularized, and unfortunately all of these different tissues become dysfunctional with age,” Boppart said. “Therefore, development of an intervention that can heal multiple tissues is ideally required to reverse age-related declines in muscle mass and function. MSCs, because of their ability to repair a variety of different tissue types, are perfectly suited for this task.”

The Ellison Medical Foundation and the National Science Foundation supported this work.

Editor's note: To reach Marni Boppart, call 217-244-1459; email mboppart@illinois.edu.

The paper, “Mesenchymal stem cells augment the adaptive response to eccentric exercise,” is in press and is available online or from the U. of I. News Bureau.

Diana Yates | Eurek Alert!
Further information:
http://news.illinois.edu/news/14/0721muscle_MarniBoppart.html

Further reports about: MSCs Urbana-Champaign age-related exercise fibers immune injury muscles repair resistance satellite

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Scientists explain unusual and effective features in perovskite

28.06.2016 | Physics and Astronomy

ChemCam findings hint at oxygen-rich past on Mars

28.06.2016 | Earth Sciences

Previously unknown global ecological disaster discovered

28.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>