Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells and ABC Transporters Essential in Kidney Regeneration

28.01.2009
In a study funded by the Dutch Kidney Foundation (DKF) a research group at Radboud University Nijmegen Medical Centre in the Netherlands, found that stem cells and ABC transporter proteins are indispensable for tubular regeneration after acute kidney injury (Journal of Pharmacology and Experimental Therapeutics, 2009 Jan; 328(1):3-9. Epub 2008 Sep 12).

Said project leader Dr. Rosalinde Masereeuw: 'To our surprise, our knockout mice for the ABC transporters P-gp and BCRP, P-gycoprotein and breast cancer resistance protein, were protected against acute kidney damage.

This was the opposite of what we expected since the transporters usually have a protective function in excreting potentially toxic compounds, while these mice lack expression. Moreover, when we cross transplanted bone marrow between normal mice and the knockouts it turned out that bone marrow from the knockouts was the source of protection.'

Regeneration
Acute kidney injury is an important cause for the need of acute hemodialysis and a source of kidney failure. On the other hand, the kidney has a remarkable capacity for recovery. Stem cells seemed to have a limited share in the repair process, but now this study suggests otherwise.

'It was known that stem cells from the bone marrow express P-gp and BCRP abundantly but will downregulate them at differentiation. Repair of tubular damage in the kidney depends primarily on local cells but stem cells are involved as well. Further, we observed an upregulation in the expression of the transporters during ischemic injury. .So we thought they might be important in renal regeneration.'

Transporter Proteins
ABC transporters (ATP binding cassette transporters) form a superfamily of highly conserved transporter proteins whose functions are not yet well understood. However, BCRP and especially P-gp have been studied in more detail in man. These cell membrane pumps are responsible for the transport of many substances, for instance drug molecules in the intestine. P-gp plays an important role in drug resistance of tumour cells.

Masereeuw: 'Our new hypothesis claims a bigger role for bone marrow derived stem cells in kidney regeneration. A possible mechanism is the infiltration of macrophages. These large immune cells have subgroups one of which increases damage but another supports tissue regeneration.'

Also, the study showed that mice without P-gp expression lose renal tubular function in a way comparable to Fanconi syndrome in man. BCRP knockouts, on the other hand, have a normal kidney function.

Blocking P-gp and BCRP
There is a great need for novel therapies that limit kidney damage after acute injury by toxic substances or shortage of oxygen, as in transplant kidneys which have no blood supply during transport. The results from this DKF study are pointing at inhibition of the transporters in kidney or bone marrow to strengthen the regenerative power of stem cells.

'Next, we will try to discover the mechanism by which stem cells and ABC transporters contribute to kidney repair', concludes Dr. Masereeuw, 'and we will test the effect of transporter blockers in our mouse models. We are convinced there are good opportunities here for new drug targets.'

Arjen Rienks | alfa
Further information:
http://www.nierstichting.nl

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>