Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study could lead to paradigm shift in organic solar cell research

20.11.2013
Organic solar cells have long been touted as lightweight, low-cost alternatives to rigid solar panels made of silicon.

Dramatic improvements in the efficiency of organic photovoltaics have been made in recent years, yet the fundamental question of how these devices convert sunlight into electricity is still hotly debated.


Stanford scientists may have resolved a debate over how organic solar cells turn sunlight into electricity. The question: What causes electron-hole pairs (excitons) to split apart? The likely answer: a gradient at the solar cell interface between disordered polymers and ordered buckyballs splits the exciton, allowing the electron (purple) to escape and produce an electric current.

Credit: Koen Vandewal, Stanford University

Now a Stanford University research team is weighing in on the controversy. Their findings, published in the Nov. 17 issue of the journal Nature Materials, indicate that the predominant working theory is incorrect, and could steer future efforts to design materials that boost the performance of organic cells.

"We know that organic photovoltaics are very good," said study coauthor Michael McGehee, a professor of materials science and engineering at Stanford. "The question is, why are they so good? The answer is controversial."

A typical organic solar cell consists of two semiconducting layers made of plastic polymers and other flexible materials. The cell generates electricity by absorbing particles of light, or photons.

When the cell absorbs light, a photon knocks out an electron in a polymer atom, leaving behind an empty space, which scientists refer to as a hole. The electron and the hole immediately form a bonded pair called an exciton. The exciton splits, allowing the electron to move independently to a hole created by another absorbed photon. This continuous movement of electrons from hole to hole produces an electric current.

In the study, the Stanford team addressed a long-standing debate over what causes the exciton to split.

"To generate a current, you have to separate the electron and the hole," said senior author Alberto Salleo, an associate professor of materials science and engineering at Stanford. "That requires two different semiconducting materials. If the electron is attracted to material B more than material A, it drops into material B. In theory, the electron should remain bound to the hole even after it drops.

"The fundamental question that's been around a long time is, how does this bound state split?"

Some like it hot

One explanation widely accepted by scientists is known as the "hot exciton effect." The idea is that the electron carries extra energy when it drops from material A to material B. That added energy gives the excited ("hot") electron enough velocity to escape from the hole.

But that hypothesis did not stand up to experimental tests, according to the Stanford team.

"In our study, we found that the hot exciton effect does not exist," Salleo said. "We measured optical emissions from the semiconducting materials and found that extra energy is not required to split an exciton."

So what actually causes electron-hole pairs to separate?

"We haven't really answered that question yet," Salleo said. "We have a few hints. We think that the disordered arrangement of the plastic polymers in the semiconductor might help the electron get away."

In a recent study, Salleo discovered that disorder at the molecular level actually improves the performance of semiconducting polymers in solar cells. By focusing on the inherent disorder of plastic polymers, researchers could design new materials that draw electrons away from the solar cell interface where the two semiconducting layers meet, he said.

"In organic solar cells, the interface is always more disordered than the area further away," Salleo explained. "That creates a natural gradient that sucks the electron from the disordered regions into the ordered regions. "

Improving energy efficiency

The solar cells used in the experiment have an energy-conversion efficiency of about 9 percent. The Stanford team hopes to improve that performance by designing semiconductors that take advantage of the interplay between order and disorder.

"To make a better organic solar cell, people have been looking for materials that would give you a stronger hot exciton effect," Salleo said. "They should instead try to figure out how the electron gets away without it being hot. This idea is pretty controversial. It's a fundamental shift in the way people think about photocurrent generation."

Other authors of the paper are Koen Vandewal (lead author), Erik Hoke, William Mateker, Jason Bloking and George Burkhard of Stanford; Steve Albrecht, Marcel Schubert and Dieter Neher of the University of Potsdam; Johannes Widmer and Moritz Riede of the Institute for Applied Photophysics (IAPP); Jessica Douglas and Jean Frechet of the University of California-Berkeley; Aram Amassian of the King Abdullah University of Science and Technology (KAUST); and Alan Sellinger of the Colorado School of Mines and the University of Oxford. Author Kenneth Graham has a joint postdoctoral fellowship with Stanford and KAUST.

Support for the study was provided by the Stanford Center for Advanced Molecular Photovoltaics and the U.S. Department of Energy.

This article was written by Mark Shwartz, Precourt Institute for Energy, Stanford University.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>