Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford Study Calls for Sheltering-in-Place in the Event of Nuclear Attack

10.09.2010
Stanford University experts have concluded that in the event of a nuclear detonation, people in large metropolitan areas are better off sheltering-in-place in basements for 12-24 hours than trying to evacuate immediately, unless a lengthy warning period is provided.

The scientific and engineering analysts comprehensively modeled the impacts of a detonation in downtown Washington D.C. and calculated clogged exit roads would pose more significant risks by exposing evacuees to radiation than if people were to remain in place at the center of large buildings or in basements.

“The logistical challenge of an evacuation appears to be beyond current response capabilities,” said author Lawrence M. Wein of Stanford University's Graduate School of Business. He noted, “Sheltering in basements saves approximately twice as many lives as being aboveground” in the Washington, D.C. area. The authors recommend government encourage businesses and citizens to develop a basement shelter strategy, including the storage of food, water, blankets, and other necessities at facilities and homes located in or near large cities.

Funded by Stanford University, the analysis accounts for blast, thermal, and radiation effects and uses sophisticated mathematical models to investigate the impact of various response strategies. Although the researchers say they have more confidence in their sheltering recommendation than in their estimates of lives that would be lost, they argue there would be almost 80,000 fatalities in the immediate aftermath of detonation of a 10 kiloton improvised nuclear device on the Washington Mall. Of the estimated 360,000 survivors without access to a vehicle, they estimate 43,000 would die if they immediately tried to evacuate on foot. In contrast, sheltering in a basement (or near the middle of a large building) would save a third of them. A 10 kiloton device could be hidden in a van or similarly-sized vehicle. The explosive force of a single kiloton of nuclear material is equivalent to the blast from 1,000 tons of TNT.

“Among survivors of the prompt effects with access to a vehicle, the number of deaths depends on the fraction of people who shelter in a basement rather than self-evacuate in their vehicle: 23,100 people die (as opposed to 77,000) if 90 percent shelter in a basement, and 54,600 die if 10 percent shelter,” according to the study. “Details related to how to organize evacuation, search and rescue, decontamination, and situational awareness (e.g. via phone or radio) reportedly have very little impact on the number of casualties.”

This new application of quantitative risk modeling is featured in the article “Analyzing Evacuation Versus Shelter-in-Place Strategies After a Terrorist Nuclear Detonation” in the September issue of the journal Risk Analysis, published by the Society for Risk Analysis. The article was authored by Lawrence M. Wein, Youngsoo Choi and Sylvie Denuit, all of Stanford University.

The study also notes sheltering “would save many more lives in New York city than in Washington for three reasons: New York city’s population density is much greater and so the population affected by the fallout would increase by nearly an order-of-magnitude; New York city has many more tall buildings, which would allow for greater protection for those who shelter; and New York city has few roadways that exit the city, which would greatly exacerbate both pedestrian and vehicle evacuation.”

The Stanford experts cite previous studies that have found first responders are unlikely to be able to establish evacuation stations until 12-48 hours after an attack, no significant federal response is likely for 24 hours, and a full federal response is not likely to be achieved for 72 hours. “Unlike a bioterror or chemical attack, it may not be possible for the government to provide timely advice to the populace after such an event.” The authors contend they have used conservative assumptions throughout the study, which they say adds strength to their conclusion that sheltering is the best option.

Risk Analysis: An International Journal is published by the nonprofit Society for Risk Analysis (SRA). SRA is a multidisciplinary, interdisciplinary, scholarly, international society that provides an open forum for all those who are interested in risk analysis. Risk analysis is broadly defined to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk, in the context of risks of concern to individuals, to public and private sector organizations, and to society at a local, regional, national, or global level. www.sra.org

Contact: Steve Gibb, 703.610.2441 Steve.Gibb@noblis.org or Lisa Pellegrin, 571.327.4868 or Lisa.Pellegrin@noblis.org to arrange an interview with the author(s). Note to editors: The complete study is available upon request from Lisa Pellegrin/Steve Gibb or here: http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.2010.01430.x/full

Steve Gibb | Newswise Science News
Further information:
http://www.noblis.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>