Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stanford diagnostic test for rare leukemia appears to give faster results

07.10.2008
A new twist on a well-known cell sorting technique may allow physicians to diagnose rare leukemias in hours instead of weeks, according to a study by researchers at the Stanford University School of Medicine and UC-San Francisco.

The clinical promise of the Stanford-developed approach, which eavesdrops on individual cells to decipher potentially dangerous molecular conversations, is likely to extend to many other disorders in which cell-signaling pathways are disrupted.

"We've eliminated a big bottleneck," said postdoctoral scholar Nikesh Kotecha, PhD, of the work. Kotecha, the lead author of the study, conducted the work as a graduate student in the laboratory of immunologist Garry Nolan, PhD, a co-senior author of the paper. "Now we can use this signaling assay to confirm a diagnosis much more quickly."

The study will be featured on the cover of the Oct. 7 issue of Cancer Cell. In addition to Nolan, who is an associate professor of microbiology and immunology as well as a member of Stanford's Cancer Center, the other senior co-author is Mignon Loh, MD, an associate professor of clinical pediatrics at UCSF.

"We couldn't have done this research without involving immunology, signaling biology, medicine, statistics and informatics," said Kotecha, who completed his PhD in biomedical informatics. "It's a true example of the strengths of translational research, bringing laboratory bench work and informatics to address a clinical problem."

The multidisciplinary technique builds on an experimental technique called flow cytometry, in which fluorescently labeled antibodies are used to classify and sort cells based on proteins displayed on their outer surface. The new approach, developed in Nolan's lab in 2004, creates small holes in the cell membrane prior to sorting. These holes allow other antibodies to enter the cell and bind to signaling molecules involved in the cell's internal monologue — in this case, a protein called STAT5. Kotecha and his collaborators used an antibody that binds only to the activated, or phosphorylated, version of the protein to determine the signaling status of the pathway in individual cells exposed to a variety of conditions.

The effect is somewhat like moving through an airport security line that screens travelers not just for weapons concealed outside their bodies, but also for their emotional states: "Happy to be headed home" in one line, "afraid of flying" in another and just plain "cranky" in another. Combine the two measurements — the availability of a weapon and the mood of the person carrying it — and you have a more reliable assessment of risk than with either one alone.

The researchers tested the technique's clinical value by applying it to the diagnosis of a difficult diagnostic problem: juvenile myelomonocytic leukemia, or JMML. Children with the relatively rare disorder typically have fevers, grow poorly, suffer from infections and generally look like they could have any one of a number of different diseases. A prompt diagnosis of JMML is particularly important because, unlike other leukemias, the only cure is a bone marrow transplant.

One of the few reliable indicators of JMML cells is their tendency to proliferate in response to very low levels of a growth-stimulating factor called GM-CSF; normal cells respond only at higher levels. But it can take two to three weeks to grow enough cells in the laboratory to get a definitive answer to this test.

Kotecha knew that GM-CSF activates a particular cellular signaling cascade called the JAK-STAT pathway. Although that pathway had not previously been directly implicated in JMML, Kotecha used an antibody that binds only to activated STAT5 to determine whether the cells of 12 patients with JMML displayed abnormally high levels of the protein in response to low doses of GM-CSF. Eleven of the 12 did so — confirming the involvement of the STAT pathway in the disorder.

"I was surprised how much more we can learn about the inner nature of these cells by 'interrogating' them with different conditions," said Nolan, who is also a member of the Donald E. and Delia B. Baxter Laboratory in Genetic Pharmacology at Stanford. "Time and again we are finding this to be a powerful amplifier of the fate of a diseased cell and a good way to understand why it responds to certain treatments and not others."

In contrast to the JMML samples, seven out of eight normal bone marrow samples, as well as eight out of eight samples from patients with similar, but not identical, disorders, maintained normal levels of activated protein after the low dose GM-CSF treatment — suggesting that the technique may be a sorely needed diagnostic aid for JMML.

The new technique also offers a way to monitor disease progress. With further refinement, the researchers hope that the technique can be used to screen the effectiveness of potential drugs for treatment of JMML and other disorders.

"Identifying populations of cells by their response to specific stimuli will facilitate our ability to assess the efficacy of specific agents in relevant subsets with increased precision," said Loh. "In an era of using increasingly sophisticated targeted agents, we hope that these studies will allow investigators to more fully appreciate the specificities of their therapies."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>