Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford brain imaging study shows physiological basis of dyslexia

29.09.2011
Researchers at the Stanford University School of Medicine have used an imaging technique to show that the brain activation patterns in children with poor reading skills and a low IQ are similar to those in poor readers with a typical IQ. The work provides more definitive evidence about poor readers having similar kinds of difficulties regardless of their general cognitive ability.

Schools and psychologists have historically relied on a child's IQ to define and diagnose dyslexia, a brain-based learning disability that impairs a person's ability to read: If a child's reading achievement was below expectation based on IQ, he would be considered dyslexic, while a poor reader with a low IQ would receive some other diagnosis. But these new findings provide "biological evidence that IQ should not be emphasized in the diagnosis of reading abilities," said Fumiko Hoeft, MD, Ph.D, an instructor at Stanford's Center for Interdisciplinary Brain Sciences Research, who is senior author of the study, which will appear in an upcoming issue of Psychological Science.

The new results come in the wake of recent behavioral studies showing that phonological deficits -- that is, difficulties in processing the sound system of language, which often leads to difficulties in connecting the sounds of language to letters -- are similar in poor readers regardless of IQ. Indeed, the 2004 reauthorization of the Individuals with Disabilities Education Act mandated that states no longer require school districts to use IQ tests in identifying individuals with learning disabilities such as dyslexia.

"There's a disassociation between what is established in research and what is happening in practice," said Hoeft, explaining that many U.S. schools still rely on a discrepancy between reading achievement and IQ to define and diagnose dyslexia. At first glance, she added, it would seem to make sense that poor readers with typical IQs would have different learning challenges than those with low ones.

The use of IQ in diagnosing dyslexia, which affects 5 to 17 percent of U.S. children, has real implications for poor readers. If children aren't diagnosed as dyslexic, they don't qualify for services that a typical dyslexic does, and they're not taught strategies to overcome specific problems in the way they view and process words.

To further understand what happens in the brains of poor readers with different IQs, Hoeft turned to imaging. She and her colleagues expected poor readers with typical IQs to exhibit similar patterns of brain activation as poor readers with low IQs. Their experiments, she said, were intended to confirm that the two groups had the same neurophysiological basis for impaired phonological processing and that their reading problems were not related to IQ.

The study involved 131 children, ranging from 7 to 16 years old, from Allegheny County, Penn., and the San Francisco Bay Area. The children were put into three groups: poor readers with typical IQ, poor readers with low IQ and typical readers with typical IQ. The children then took a reading test and underwent a brain-imaging technique called functional magnetic resonance imaging, or fMRI, as they completed a task that involved judging whether two visually presented words rhymed (e.g., bait and gate) or not (e.g., price or miss).

In both samples, the typical readers had significantly higher reading-related scores and more accurate performance on the rhyme-judgment task than the two other groups. And there were no significant differences between the two groups of poor readers on these measures.

In the fMRI analysis, researchers found that both groups of poor readers exhibited significantly reduced activations relative to typical readers in the left inferior parietal lobule and left fusiform gyrus. The researchers also used a sophisticated analysis to determine that the brain patterns of each group of poor readers looked liked those of the other group of poor readers more than 80 percent of the time, and did not often resemble the patterns from the normal readers.

Hoeft noted that the results are timely. The Diagnostic and Statistical Manual of Mental Disorders, the standard diagnostic guide for mental illnesses and brain disorders, is currently being revised, and there is a proposal to change it so that IQ wouldn't be taken into consideration when diagnosing dyslexia. (The new version, DSM V, will be released in 2013.) This work, she said, is the, "first study reporting biological neuroimaging evidence to support" that change.

"Convergent psychological, educational and now neurobiological evidence suggests that the long-standing and widely applied diagnosis of dyslexia by IQ discrepancy is not supported," the researchers wrote in the paper.

Hoeft and her colleagues also point out that these and other findings indicate that, "any child with a reading difficulty, regardless of his or her general level of cognitive abilities (IQ), should be encouraged to seek reading intervention."

Hoeft said she will continue her work in this area and is hoping to use imaging to predict outcomes of poor readers. She also plans to look at younger readers to see if imaging can be used to diagnose children at younger ages.

The study's two lead authors are Stanford graduate student Hiroko Tanaka and Jessica Black, Ph.D, of Boston College. The other Stanford co-authors are graduate student Leanne Stanley; Shelli Kesler, Ph.D, assistant professor of psychiatry and behavioral sciences; and Allan Reiss, MD, the Howard C. Robbins Professor of Psychiatry and Behavioral Sciences, a professor of radiology and the director of Stanford's Center for Interdisciplinary Brain Sciences Research. Researchers from the Massachusetts Institute of Technology are also co-authors.

The work was supported by the William and Flora Hewlett Foundation, Richard King Mellon Foundation, Ellison Medical Foundation, National Institute of Child Health and Human Development, Lucile Packard Foundation for Children's Health, Spectrum Child Health & Clinical and Translational Science Award, Dyslexia Foundation and the National Alliance for Research in Schizophrenia and Depression.

Information about the Department of Psychiatry and Behavioral Sciences, which also supported the research, is available at http://psychiatry.stanford.edu/.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu.

The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT:
Michelle Brandt
650-723-0272
mbrandt@stanford.edu
BROADCAST MEDIA CONTACT
M.A. Malone
650-723-6912
mamalone@stanford.edu

Michelle Brandt | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Brain Brain Sciences IQ test IQs Medicine Psychiatry behavioral health services

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>