Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford brain imaging study shows physiological basis of dyslexia

29.09.2011
Researchers at the Stanford University School of Medicine have used an imaging technique to show that the brain activation patterns in children with poor reading skills and a low IQ are similar to those in poor readers with a typical IQ. The work provides more definitive evidence about poor readers having similar kinds of difficulties regardless of their general cognitive ability.

Schools and psychologists have historically relied on a child's IQ to define and diagnose dyslexia, a brain-based learning disability that impairs a person's ability to read: If a child's reading achievement was below expectation based on IQ, he would be considered dyslexic, while a poor reader with a low IQ would receive some other diagnosis. But these new findings provide "biological evidence that IQ should not be emphasized in the diagnosis of reading abilities," said Fumiko Hoeft, MD, Ph.D, an instructor at Stanford's Center for Interdisciplinary Brain Sciences Research, who is senior author of the study, which will appear in an upcoming issue of Psychological Science.

The new results come in the wake of recent behavioral studies showing that phonological deficits -- that is, difficulties in processing the sound system of language, which often leads to difficulties in connecting the sounds of language to letters -- are similar in poor readers regardless of IQ. Indeed, the 2004 reauthorization of the Individuals with Disabilities Education Act mandated that states no longer require school districts to use IQ tests in identifying individuals with learning disabilities such as dyslexia.

"There's a disassociation between what is established in research and what is happening in practice," said Hoeft, explaining that many U.S. schools still rely on a discrepancy between reading achievement and IQ to define and diagnose dyslexia. At first glance, she added, it would seem to make sense that poor readers with typical IQs would have different learning challenges than those with low ones.

The use of IQ in diagnosing dyslexia, which affects 5 to 17 percent of U.S. children, has real implications for poor readers. If children aren't diagnosed as dyslexic, they don't qualify for services that a typical dyslexic does, and they're not taught strategies to overcome specific problems in the way they view and process words.

To further understand what happens in the brains of poor readers with different IQs, Hoeft turned to imaging. She and her colleagues expected poor readers with typical IQs to exhibit similar patterns of brain activation as poor readers with low IQs. Their experiments, she said, were intended to confirm that the two groups had the same neurophysiological basis for impaired phonological processing and that their reading problems were not related to IQ.

The study involved 131 children, ranging from 7 to 16 years old, from Allegheny County, Penn., and the San Francisco Bay Area. The children were put into three groups: poor readers with typical IQ, poor readers with low IQ and typical readers with typical IQ. The children then took a reading test and underwent a brain-imaging technique called functional magnetic resonance imaging, or fMRI, as they completed a task that involved judging whether two visually presented words rhymed (e.g., bait and gate) or not (e.g., price or miss).

In both samples, the typical readers had significantly higher reading-related scores and more accurate performance on the rhyme-judgment task than the two other groups. And there were no significant differences between the two groups of poor readers on these measures.

In the fMRI analysis, researchers found that both groups of poor readers exhibited significantly reduced activations relative to typical readers in the left inferior parietal lobule and left fusiform gyrus. The researchers also used a sophisticated analysis to determine that the brain patterns of each group of poor readers looked liked those of the other group of poor readers more than 80 percent of the time, and did not often resemble the patterns from the normal readers.

Hoeft noted that the results are timely. The Diagnostic and Statistical Manual of Mental Disorders, the standard diagnostic guide for mental illnesses and brain disorders, is currently being revised, and there is a proposal to change it so that IQ wouldn't be taken into consideration when diagnosing dyslexia. (The new version, DSM V, will be released in 2013.) This work, she said, is the, "first study reporting biological neuroimaging evidence to support" that change.

"Convergent psychological, educational and now neurobiological evidence suggests that the long-standing and widely applied diagnosis of dyslexia by IQ discrepancy is not supported," the researchers wrote in the paper.

Hoeft and her colleagues also point out that these and other findings indicate that, "any child with a reading difficulty, regardless of his or her general level of cognitive abilities (IQ), should be encouraged to seek reading intervention."

Hoeft said she will continue her work in this area and is hoping to use imaging to predict outcomes of poor readers. She also plans to look at younger readers to see if imaging can be used to diagnose children at younger ages.

The study's two lead authors are Stanford graduate student Hiroko Tanaka and Jessica Black, Ph.D, of Boston College. The other Stanford co-authors are graduate student Leanne Stanley; Shelli Kesler, Ph.D, assistant professor of psychiatry and behavioral sciences; and Allan Reiss, MD, the Howard C. Robbins Professor of Psychiatry and Behavioral Sciences, a professor of radiology and the director of Stanford's Center for Interdisciplinary Brain Sciences Research. Researchers from the Massachusetts Institute of Technology are also co-authors.

The work was supported by the William and Flora Hewlett Foundation, Richard King Mellon Foundation, Ellison Medical Foundation, National Institute of Child Health and Human Development, Lucile Packard Foundation for Children's Health, Spectrum Child Health & Clinical and Translational Science Award, Dyslexia Foundation and the National Alliance for Research in Schizophrenia and Depression.

Information about the Department of Psychiatry and Behavioral Sciences, which also supported the research, is available at http://psychiatry.stanford.edu/.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu.

The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

PRINT MEDIA CONTACT:
Michelle Brandt
650-723-0272
mbrandt@stanford.edu
BROADCAST MEDIA CONTACT
M.A. Malone
650-723-6912
mamalone@stanford.edu

Michelle Brandt | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: Brain Brain Sciences IQ test IQs Medicine Psychiatry behavioral health services

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>