Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stanford analysis provides fuller picture of human expansion from Africa

23.10.2012
A comprehensive analysis of the anthropological and genetic history of humans' expansion out of Africa could lead to medical advances.
A new, comprehensive review of humans' anthropological and genetic records gives the most up-to-date story of the "Out of Africa" expansion that occurred about 45,000 to 60,000 years ago.

This expansion, detailed by three Stanford geneticists, had a dramatic effect on human genetic diversity, which persists in present-day populations. As a small group of modern humans migrated out of Africa into Eurasia and the Americas, their genetic diversity was substantially reduced.

In studying these migrations, genomic projects haven't fully taken into account the rich archaeological and anthropological data available, and vice versa. This review integrates both sides of the story and provides a foundation that could lead to better understanding of ancient humans and, possibly, genomic and medical advances.

"People are doing amazing genome sequencing, but they don't always understand human demographic history" that can help inform an investigation, said review co-author Brenna Henn, a postdoctoral fellow in genetics at the Stanford School of Medicine who has a PhD in anthropology from Stanford. "We wanted to write this as a primer on pre-human history for people who are not anthropologists."

This model of the Out of Africa expansion provides the framework for testing other anthropological and genetic models, Henn said, and will allow researchers to constrain various parameters on computer simulations, which will ultimately improve their accuracy.

"The basic notion is that all of these disciplines have to be considered simultaneously when thinking about movements of ancient populations," said Marcus Feldman, a professor of biology at Stanford and the senior author of the paper. "What we're proposing is a story that has potential to explain any of the fossil record that subsequently becomes available, and to be able to tell what was the size of the population in that place at that time."

The anthropological information can inform geneticists when they investigate certain genetic changes that emerge over time. For example, geneticists have found that genes for lactose intolerance and gluten sensitivity began to emerge in populations expanding into Europe around 10,000 years ago.

The anthropological record helps explain this: It was around this time that humans embraced agriculture, including milk and wheat production. The populations that prospered – and thus those who survived to pass on these mutations – were those who embraced these unnatural food sources. This, said Feldman, is an example of how human movements drove a new form of natural selection.

Populations that expand from a small founding group can also exhibit reduced genetic diversity – known as a "bottleneck" – a classic example being the Ashkenazi Jewish population, which has a fairly large number of genetic diseases that can be attributed to its small number of founders. When this small group moved from the Rhineland to Eastern Europe, reproduction occurred mainly within the group, eventually leading to situations in which mothers and fathers were related. This meant that offspring often received the same deleterious gene from each parent and, as this process continued, ultimately resulted in a population in which certain diseases and cancers are more prevalent.

"If you know something about the demographic history of populations, you may be able to learn something about the reasons why a group today has a certain genetic abnormality – either good or bad," Feldman said. "That's one of the reasons why in our work we focus on the importance of migration and history of mixing in human populations. It helps you assess the kinds of things you might be looking for in a first clinical assessment. It doesn't have the immediacy of prescribing chemotherapy – it's a more general look at what's the status of human variability in DNA, and how might that inform a clinician."

The study is published in the current edition of the Proceedings of the National Academy of Sciences and was co-authored by Feldman's longtime collaborator, population geneticist Luigi Luca Cavalli-Sforza of Stanford and the Università Vita-Salute San Raffaele in Italy.
Contact
Marcus Feldman, Biology: (650) 725-1867, mfeldman@stanford.edu
Brenna Henn, Genetics: bmhenn@stanford.edu
Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Bjorn Carey | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>