Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Squid 'sight': Not just through eyes

03.06.2009
It's hard to miss the huge eye of a squid. But now it appears that certain squids can detect light through an organ other than their eyes as well.

That's what researchers at the University of Wisconsin-Madison report in the current issue (June 2) of the Proceedings of the National Academy of Sciences.

The study shows that the light-emitting organ some squids use to camouflage themselves to avoid being seen by predators — usually fish sitting on the ocean floor — also detects light.

The findings may lead to future studies that provide insight into the mechanisms of controlling and perceiving light.

"Evolution has a 'toolkit' and when it needs to do a particular job, such as see light, it uses the same toolkit again and again," explains lead author Margaret McFall-Ngai, a professor of medical microbiology and immunology at the UW-Madison School of Medicine and Public Health (SMPH). "In this case, the light organ, which comes from different tissues than the eye during development, uses the same proteins as the eye to see light."

In studying the squid for the past 20 years, McFall-Ngai and her colleagues have been drawn to the fact that the squid-light organ is a natural model of symbiosis — an interdependent relationship between two different species in which each benefits from the other.

In this case, the light organ is filled with luminous bacteria that emit light and provide the squid protection against predators. In turn, the squid provides housing and nourishment for the bacteria.

The UW-Madison researchers have been intrigued by the light organ's "counterillumination" ability — this capacity to give off light to make squids as bright as the ocean surface above them, so that predators below can't see them.

"Until now, scientists thought that illuminating tissues in the light organ functioned exclusively for the control of the intensity and direction of light output from the organ, with no role in light perception," says McFall-Ngai. "Now we show that the E. scolopes squid has additional light-detecting tissue that is an integral component of the light organ."

The researchers demonstrated that the squid light organ has the molecular machinery to respond to light cues. Molecular analysis showed that genes that produce key visual proteins are expressed in light-organ tissues, including genes similar to those that occur in the retina. They also showed that, as in the retina, these visual proteins respond to light, producing a physiological response.

"We found that the light organ in the squid is capable of sensing light as well as emitting and controlling the intensity of luminescence," says co-author Nansi Jo Colley, SMPH professor of ophthalmology and visual sciences and of genetics.

Adds McFall-Ngai, "The tissues may perceive environmental light, providing the animal with a mechanism to compare this light with its own light emission."

McFall-Ngai's large research program into the relatively simple squid-light organ symbiosis aims to shed light on symbiosis affecting humans.

"We know that humans house trillions of bacteria associated with components of eight of their 10 organ systems," she says. "These communities of bacteria are stable partners that make us healthy."

Both Colley and McFall-Ngai are members of the UW-Madison Eye Research Institute.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>