Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sport makes middle-aged people smarter

29.10.2012
Cognitive functions improve significantly after four months of high-intensity interval training program in middle-aged people with increased cardiovascular risk

High-intensity interval training makes middle-aged people not only healthier but smarter, showed a Montreal Heart Institute (MHI) study led by Dr. Anil Nigam of the MHI and University of Montreal, in collaboration with the Montreal Geriatric University Institute.

The participants all had a body-mass index (BMI) between 28 and 31 (overweight) in addition to one or more other cardiovascular risk factors. Body-mass index is calculated as a person's weight divided by their height squared (kg/m2) – 25 to 30 is considered overweight, over 30 is obese. High-intensity interval training involves alternating between short periods of low and high intensity aerobic exercise – for example, a series of 30 seconds of sprinting followed by 30 seconds of walking or jogging.

"We worked with six adults who all followed a four-month program of twice weekly interval training on stationary bicycles and twice weekly resistance training. Cognitive function, VO2max and brain oxygenation during exercise testing revealed that the participants' cognitive functions had greatly improved thanks to the exercise," Dr. Nigam said. VO2max is the maximum capacity of an individual's body to transport and use oxygen during exercise. It impacts on the body's ability to oxygenate the brain and is related to cognitive function.

"Our participants underwent a battery of cognitive, biological and physiological tests before the program began in order to determine their cognitive functions, body composition, cardiovascular risk, brain oxygenation during exercise and maximal aerobic capacity," Dr. Nigam explained. The cognitive tests included tasks such as remembering pairs of numbers and symbols. To see what was actually happening in the brain, the researchers used near-infra red spectroscopy (NIRS), a technique that works with light (in the near-infra red range) sent though human tissue that reacts with oxygen in the blood (light absorption). It is so sensitive that it detects the minute changes in the volume and oxygenation of blood occur in our brains when we exercise or think.

"After the program was finished, we discovered that their waist circumference and particularly their trunk fat mass had decreased. We also found that their VO2max, insulin sensitivity had increased significantly, in tandem with their score on the cognitive tests and the oxygenation signals in the brain during exercise," Dr Nigam said. Insulin sensitivity is the ability of sugar to enter body tissue (mainly liver and muscle.)

The scientists believe that many people could benefit by following a similar training program to the one used in their study, and they will be presenting their findings at the Canadian Cardiovascular Congress (CCC) in Toronto in October 27-31, 2012. The research was financed by the ÉPIC Centre and Montreal Heart Institute Foundations.

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>