Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Species reemergence after collapse: Possible but different

23.05.2011
New study shows how species can reemerge after collapse

Species pairs that disappear through hybridization after human-induced changes to the environment can reemerge if the disturbance is removed, according to a new mathematical model that shows the conditions under which reemergence might happen.

The findings, published in the journal Evolution, are important for conservationists and ecosystem managers interested in preserving, or even restoring, systems that have been disturbed by human activity.

By simulating environmental disturbances that reduce the ability of individuals to identify and select mates from their own species, the model explores the mechanisms that cause hybridization between closely-related species. Hybridization can lead to population decline and the loss of biodiversity. For instance, certain species of stickleback fish have collapsed into hybrid swarms as water clarity in their native lakes has changed, and certain species of tree frogs have collapsed as vegetation has been removed around their shared breeding ponds. Such hybrid swarms can replace the original species.

"What is happening isn't just speciation in reverse. The model shows that populations after collapse are likely to be different from the parental populations in ways that affect the future evolution of the system," said Tucker Gilman, postdoctoral fellow at the National Institute for Mathematical and Biological Synthesis and the paper's lead author.

According to the model, the reemergence of species pairs was more likely when disturbances were strong than when they were weak, and most likely when disturbances were quickly corrected. However, even temporary bouts of hybridization often led to substantial homogenization of species pairs. This suggests that ecosystem managers may be able to refill ecological niches, but probably won't be able to resurrect lost species after species collapse.

"The encouraging news from an ecosystems service point of view is that, if we act quickly, we may be able to refill ecological niches emptied by species collapse. However, even if we can refill the niches, we probably won't be able to bring back the same species that we lost," Gilman said.

Citation: Gilman RT, Behm JE. 2011. Hybridization, species collapse, and species reemergence after disturbance to premating mechanisms of reproductive isolation. Evolution. Article first published online: 29 APR 2011. DOI: 10.1111/j.1558-5646.2011.01320.x

The National Institute for Mathematical and Biological Synthesis (NIMBioS) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Catherine Crawley | EurekAlert!
Further information:
http://www.nimbios.org

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>