Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Species reemergence after collapse: Possible but different

New study shows how species can reemerge after collapse

Species pairs that disappear through hybridization after human-induced changes to the environment can reemerge if the disturbance is removed, according to a new mathematical model that shows the conditions under which reemergence might happen.

The findings, published in the journal Evolution, are important for conservationists and ecosystem managers interested in preserving, or even restoring, systems that have been disturbed by human activity.

By simulating environmental disturbances that reduce the ability of individuals to identify and select mates from their own species, the model explores the mechanisms that cause hybridization between closely-related species. Hybridization can lead to population decline and the loss of biodiversity. For instance, certain species of stickleback fish have collapsed into hybrid swarms as water clarity in their native lakes has changed, and certain species of tree frogs have collapsed as vegetation has been removed around their shared breeding ponds. Such hybrid swarms can replace the original species.

"What is happening isn't just speciation in reverse. The model shows that populations after collapse are likely to be different from the parental populations in ways that affect the future evolution of the system," said Tucker Gilman, postdoctoral fellow at the National Institute for Mathematical and Biological Synthesis and the paper's lead author.

According to the model, the reemergence of species pairs was more likely when disturbances were strong than when they were weak, and most likely when disturbances were quickly corrected. However, even temporary bouts of hybridization often led to substantial homogenization of species pairs. This suggests that ecosystem managers may be able to refill ecological niches, but probably won't be able to resurrect lost species after species collapse.

"The encouraging news from an ecosystems service point of view is that, if we act quickly, we may be able to refill ecological niches emptied by species collapse. However, even if we can refill the niches, we probably won't be able to bring back the same species that we lost," Gilman said.

Citation: Gilman RT, Behm JE. 2011. Hybridization, species collapse, and species reemergence after disturbance to premating mechanisms of reproductive isolation. Evolution. Article first published online: 29 APR 2011. DOI: 10.1111/j.1558-5646.2011.01320.x

The National Institute for Mathematical and Biological Synthesis (NIMBioS) brings together researchers from around the world to collaborate across disciplinary boundaries to investigate solutions to basic and applied problems in the life sciences. NIMBioS is sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture with additional support from The University of Tennessee, Knoxville.

Catherine Crawley | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>