Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sparkling Drinks Spark Pain Circuits

29.09.2010
You may not think of the fizz in soda as spicy, but your body does.

The carbon dioxide in fizzy drinks sets off the same pain sensors in the nasal cavity as mustard and horseradish, though at a lower intensity, according to new research from the University of Southern California.

“Carbonation evokes two distinct sensations. It makes things sour and it also makes them burn. We have all felt that noxious tingling sensation when soda goes down your throat too fast,” said Emily Liman, senior author of a study published online in the Journal of Neuroscience.

That burning sensation comes from a system of nerves that respond to sensations of pain, skin pressure and temperature in the nose and mouth.

“What we did not know was which cells and which molecules within those cells are responsible for the painful sensation we experience when we drink a carbonated soda,” said Liman, an associate professor of neurobiology in the USC College of Letters, Arts and Sciences.

By flowing carbonated saline onto a dish of nerve cells from the sensory circuits in the nose and mouth, the researchers found that the gas activated only a particular type of cell.

“The cells that responded to CO2 were the same cells that detect mustard,” Liman said.

These cells express a gene known as TRPA1 and serve as general pain sensors.

Mice missing the TRPA1 gene showed “a greatly reduced response” to carbon dioxide, Liman said, while adding the TRPA1 genetic code to CO2-insensitive cells made them responsive to the gas.

Now that carbonated beverages have been linked to pain circuits, some may wonder why we consume them. A new park in Paris even features drinking fountains that dispense free sparkling water.

Liman cited studies going back as far as 1885 that found carbonation dramatically reduced the growth of bacteria.

"Or it may be a macho thing," she speculated.

If only a sip of San Pellegrino were all it took to prove one’s hardiness.

The pain-sensing TRPA1 provides only one aspect of carbonation’s sensory experience. In 2009, a group led by Charles Zuker of the University of California, San Diego and Nicholas Ryba of the National Institutes of Health showed that carbonation trips cells in the tongue that convey sourness.

Liman’s collaborators were lead author Yuanyuan Wang and second author Rui Chang, both graduate students in neurobiology at USC.

The National Institutes of Health funded the research.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>