Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sparkling Drinks Spark Pain Circuits

You may not think of the fizz in soda as spicy, but your body does.

The carbon dioxide in fizzy drinks sets off the same pain sensors in the nasal cavity as mustard and horseradish, though at a lower intensity, according to new research from the University of Southern California.

“Carbonation evokes two distinct sensations. It makes things sour and it also makes them burn. We have all felt that noxious tingling sensation when soda goes down your throat too fast,” said Emily Liman, senior author of a study published online in the Journal of Neuroscience.

That burning sensation comes from a system of nerves that respond to sensations of pain, skin pressure and temperature in the nose and mouth.

“What we did not know was which cells and which molecules within those cells are responsible for the painful sensation we experience when we drink a carbonated soda,” said Liman, an associate professor of neurobiology in the USC College of Letters, Arts and Sciences.

By flowing carbonated saline onto a dish of nerve cells from the sensory circuits in the nose and mouth, the researchers found that the gas activated only a particular type of cell.

“The cells that responded to CO2 were the same cells that detect mustard,” Liman said.

These cells express a gene known as TRPA1 and serve as general pain sensors.

Mice missing the TRPA1 gene showed “a greatly reduced response” to carbon dioxide, Liman said, while adding the TRPA1 genetic code to CO2-insensitive cells made them responsive to the gas.

Now that carbonated beverages have been linked to pain circuits, some may wonder why we consume them. A new park in Paris even features drinking fountains that dispense free sparkling water.

Liman cited studies going back as far as 1885 that found carbonation dramatically reduced the growth of bacteria.

"Or it may be a macho thing," she speculated.

If only a sip of San Pellegrino were all it took to prove one’s hardiness.

The pain-sensing TRPA1 provides only one aspect of carbonation’s sensory experience. In 2009, a group led by Charles Zuker of the University of California, San Diego and Nicholas Ryba of the National Institutes of Health showed that carbonation trips cells in the tongue that convey sourness.

Liman’s collaborators were lead author Yuanyuan Wang and second author Rui Chang, both graduate students in neurobiology at USC.

The National Institutes of Health funded the research.

Carl Marziali | Newswise Science News
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>