Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space: The final frontier… open to the public

18.09.2014

Historically, spaceflight has been reserved for the very healthy. Astronauts are selected for their ability to meet the highest physical and psychological standards to prepare them for any unknown challenges. However, with the advent of commercial spaceflight, average people can now fly for enjoyment. The aerospace medicine community has had very little information about what medical conditions or diseases should be considered particularly risky in the spaceflight environment, as most medical conditions have never been studied for risk in space — until now.

The aerospace medicine group at the University of Texas Medical Branch at Galveston recently studied how average people with common medical problems — high blood pressure, heart disease, diabetes, lung diseases like asthma or emphysema and back and neck injuries, surgeries or disorders — would be able to tolerate the stresses of commercial spaceflight.

Overall, they found that nearly everyone with well-controlled medical conditions who participated in this project tolerated simulated flight without problems. The study can be found in the journal Aviation, Space and Environmental Medicine.

"Physiological stresses of flight include increased acceleration forces, or 'G-forces,' during launch and re-entry, as well as the microgravity period," said lead author Dr. Rebecca Blue. "Our goal was to see how average people with common medical problems, who aren't necessarily as fit as a career astronaut, would be able to tolerate these stresses of an anticipated commercial spaceflight."

Some medical conditions are of particular interest within the commercial spaceflight industry, either because of the high rate of occurrence or because of the potential to cause sudden, serious medical events. The researchers studied how people with these common conditions performed when put through centrifuge simulations of spaceflight launch and re-entry.

The centrifuge allows researchers to mimic the acceleration of a rocket launch or of a spacecraft re-entering through the atmosphere. Astronauts regularly use centrifuges to train for their own spaceflights. The acceleration forces expected in a commercial spaceflight profile are tolerable, but can be uncomfortable, for healthy individuals.

The researchers wanted to see if they were equally tolerable for individuals with complex medical histories or whether there were certain conditions that would make it more difficult for them to handle the flight.

"This study further supports the belief that, despite significant chronic medical conditions, the dream of spaceflight is one that most people can achieve," said Blue.

###

Other authors of this paper include James Pattarini, David Reyes, Robert Mulcahy, Charles Mathers, Johnené Vardiman, Tarah Castleberry and James Vanderploeg of UTMB and Alejandro Garbino of Baylor College of Medicine.

This research was supported by the Federal Aviation Administration's Center of Excellence for Commercial Space Transportation, which has designated UTMB's aerospace medicine group as a leader in research for the commercial spaceflight industry. The goal of the UTMB group is to identify the knowledge gaps regarding commercial spaceflight and to address these gaps with research to allow for science-based decision-making within the field. The team also had support from the National Space Biomedical Research Institute to complete this work.

Donna Ramirez | Eurek Alert!
Further information:
http://www.utmb.edu/

Further reports about: Aviation Galveston UTMB acceleration centrifuge gaps medical conditions spaceflight

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>