Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space: The final frontier… open to the public

18.09.2014

Historically, spaceflight has been reserved for the very healthy. Astronauts are selected for their ability to meet the highest physical and psychological standards to prepare them for any unknown challenges. However, with the advent of commercial spaceflight, average people can now fly for enjoyment. The aerospace medicine community has had very little information about what medical conditions or diseases should be considered particularly risky in the spaceflight environment, as most medical conditions have never been studied for risk in space — until now.

The aerospace medicine group at the University of Texas Medical Branch at Galveston recently studied how average people with common medical problems — high blood pressure, heart disease, diabetes, lung diseases like asthma or emphysema and back and neck injuries, surgeries or disorders — would be able to tolerate the stresses of commercial spaceflight.

Overall, they found that nearly everyone with well-controlled medical conditions who participated in this project tolerated simulated flight without problems. The study can be found in the journal Aviation, Space and Environmental Medicine.

"Physiological stresses of flight include increased acceleration forces, or 'G-forces,' during launch and re-entry, as well as the microgravity period," said lead author Dr. Rebecca Blue. "Our goal was to see how average people with common medical problems, who aren't necessarily as fit as a career astronaut, would be able to tolerate these stresses of an anticipated commercial spaceflight."

Some medical conditions are of particular interest within the commercial spaceflight industry, either because of the high rate of occurrence or because of the potential to cause sudden, serious medical events. The researchers studied how people with these common conditions performed when put through centrifuge simulations of spaceflight launch and re-entry.

The centrifuge allows researchers to mimic the acceleration of a rocket launch or of a spacecraft re-entering through the atmosphere. Astronauts regularly use centrifuges to train for their own spaceflights. The acceleration forces expected in a commercial spaceflight profile are tolerable, but can be uncomfortable, for healthy individuals.

The researchers wanted to see if they were equally tolerable for individuals with complex medical histories or whether there were certain conditions that would make it more difficult for them to handle the flight.

"This study further supports the belief that, despite significant chronic medical conditions, the dream of spaceflight is one that most people can achieve," said Blue.

###

Other authors of this paper include James Pattarini, David Reyes, Robert Mulcahy, Charles Mathers, Johnené Vardiman, Tarah Castleberry and James Vanderploeg of UTMB and Alejandro Garbino of Baylor College of Medicine.

This research was supported by the Federal Aviation Administration's Center of Excellence for Commercial Space Transportation, which has designated UTMB's aerospace medicine group as a leader in research for the commercial spaceflight industry. The goal of the UTMB group is to identify the knowledge gaps regarding commercial spaceflight and to address these gaps with research to allow for science-based decision-making within the field. The team also had support from the National Space Biomedical Research Institute to complete this work.

Donna Ramirez | Eurek Alert!
Further information:
http://www.utmb.edu/

Further reports about: Aviation Galveston UTMB acceleration centrifuge gaps medical conditions spaceflight

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>