Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soy increases radiation's ability to kill lung cancer cells, study shows

Soy isoflavones block cancer cells' DNA repair mechanisms while protecting normal tissue

A component in soybeans increases radiation's ability to kill lung cancer cells, according to a study published in the April issue of the Journal of Thoracic Oncology, the official monthly journal of the International Association for the Study of Lung Cancer.

"To improve radiotherapy for lung cancer cells, we are studying the potential of natural non-toxic components of soybeans, called soy isoflavones, to augment the effect of radiation against the tumor cells and at the same time protect normal lung against radiation injury," said Dr. Gilda Hillman, an associate professor in the Department of Radiation Oncology at Wayne State University's School of Medicine and the Karmanos Cancer Institute in Detroit.

"These natural soy isoflavones can sensitize cancer cells to the effects of radiotherapy, by inhibiting survival mechanisms which cancer cells activate to protect themselves," Hillman said. "At the same time, soy isoflavones can also act as antioxidants in normal tissues, which protect them against unintended damage from the radiotherapy. In a recent study, published in the Journal of Thoracic Oncology, we demonstrated that soy isoflavones increase killing of cancer cells by radiation via blocking DNA repair mechanisms, which are turned on by the cancer cells to survive the damage caused by radiation."

Human A549 non-small cell lung cancer (NSCLC) cells that were treated with soy isoflavones before radiation showed more DNA damage and less repair activity than cells that received only radiation.

Researchers used a formulation consisting of the three main isoflavones found in soybeans, including genistein, daidzein and glycitein.

Previously, researchers had found that pure genistein demonstrated antitumor activity in human NSCLC cell lines and enhanced the effects of EGFR-tyrosine kinase inhibitors. This study showed that the soy mixture had an even greater antitumor effect than pure genistein. The soy mixture also is consistent with the soy isoflavone pills used in clinical studies, which have been proven to be safe, researchers said.

The study was supported by the American Institute for Cancer Research.

About the Journal of Thoracic Oncology:

The Journal of Thoracic Oncology (JTO) is the official monthly journal of the International Association for the Study of Lung Cancer (IASLC). It is a prized resource for medical specialists and scientists who focus on the detection, prevention, diagnosis and treatment of lung cancer. It emphasizes a multidisciplinary approach, including original research (clinical trials and translational or basic research), reviews and opinion pieces.

To learn more about the JTO please visit

About IASLC:

The Denver-based International Association for the Study of Lung Cancer (IASLC) is the only global organization dedicated to the study of lung cancer. Founded in 1972, the association's membership includes more than 3,000 lung cancer specialists in 80 countries.

IASLC members work toward developing and promoting the study of etiology, epidemiology, prevention, diagnosis, treatment and all other aspects of lung cancer and thoracic malignancies. IASLC members work to enhance the understanding of lung cancer among scientists, members of the medical community and the public. To learn more about the IASLC please visit

Renée McGaw | EurekAlert!
Further information:

Further reports about: Cancer DNA IASLC NSCLC Oncology Thoracic cancer cells lung cancer lung cancer cells

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>