Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soy increases effectiveness of radiation at killing lung cancer

08.04.2011
Soy isoflavones block cancer cells' DNA repair mechanisms while protecting normal tissue

A component in soybeans increases radiation's ability to kill lung cancer cells, according to a Wayne State University study published in the April 2011 issue of the Journal of Thoracic Oncology, the official monthly journal of the International Association for the Study of Lung Cancer.

"To improve radiotherapy for lung cancer, we are studying the potential of natural non-toxic components of soybeans, called soy isoflavones, to augment the effect of radiation against the tumor cells and at the same time protect normal lung cells against radiation injury," said Gilda Hillman, Ph.D., associate professor in the Department of Radiation Oncology at Wayne State University's School of Medicine and the Karmanos Cancer Institute, who led the team of researchers.

"These natural soy isoflavones can sensitize cancer cells to the effects of radiotherapy by inhibiting the survival mechanisms that cancer cells activate to protect themselves," Hillman said. "At the same time, soy isoflavones can also act as antioxidants, which protect normal tissues against unintended damage from the radiotherapy."

Hillman and her team demonstrated that soy isoflavones increase killing of cancer cells by radiation via blocking DNA repair mechanisms, which are turned on by the cancer cells to survive the damage caused by radiation. Human A549 non-small cell lung cancer (NSCLC) cells that were treated with soy isoflavones before radiation showed more DNA damage and less repair activity than cells that received only radiation.

Researchers used a formulation consisting of the three main isoflavones found in soybeans, including genistein, daidzein and glycitein.

Previous research demonstrated that pure genistein demonstrated antitumor activity in human NSCLC cell lines and enhanced the effects of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Hillman's study showed that the soy mixture had an even greater antitumor effect than pure genistein. The soy mixture also is consistent with the soy isoflavone pills used in clinical studies, which have proven to be safe.

The study was supported by the American Institute for Cancer Research.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu.

Julie O'Connor | EurekAlert!
Further information:
http://www.wayne.edu

Further reports about: Cancer DNA Oncology Soy antioxidants cancer cells lung cancer radiation oncology radiotherapy

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>