Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southeast England most at risk of rising deaths due to climate change

24.03.2014

Warmer summers brought on by climate change will cause more deaths in London and southeast England than the rest of the country, scientists predict.

Researchers at Imperial College London looked at temperature records and mortality figures for 2001 to 2010 to find out which districts in England and Wales experience the biggest effects from warm temperatures.

In the most vulnerable districts, in London and the southeast, the odds of dying from cardiovascular or respiratory causes increased by over 10 per cent for every 1C rise in temperature. Districts in the far north were much more resilient, seeing no increase in deaths at equivalent temperatures.

Writing in Nature Climate Change, the researchers say local variations in climate change vulnerability should be taken into account when assessing the risks and choosing policy responses.

... more about:
»Climate »Health »NHS »NIHR »discoveries »mortality »temperatures

Dr James Bennett, the lead author of the study from the MRC-PHE Centre for Environment and Health at Imperial College London, said: "It's well known that warm weather can increase the risk of cardiovascular and respiratory deaths, especially in elderly people. Climate change is expected to raise average temperatures and increase temperature variability, so we can expect it to have effects on mortality even in countries like the UK with a temperate climate."

Across England and Wales as a whole, a summer that is 2C warmer than average would be expected to cause around 1,550 extra deaths, the study found. Just over half would be in people aged over 85, and 62 per cent would be in women. The extra deaths would be distributed unevenly, with 95 out of 376 districts accounting for half of all deaths.

The effects of warm temperature were similar in urban and rural districts. The most vulnerable districts included deprived districts in London such as Hackney and Tower Hamlets, with the odds of dying more than doubling on very hot days like those of August 2003.

"The reasons for the uneven distribution of deaths in warm weather need to be studied," said Professor Majid Ezzati, from the School of Public Health at Imperial, who led the research. "It might be due to more vulnerable individuals being concentrated in some areas, or it might be related to differences at the community level, like quality of healthcare, that require government action.

"We might expect that people in areas that tend to be warmer would be more resilient, because they adapt by installing air conditioning for example. These results show that this isn't the case in England and Wales.

"While climate change is a global phenomenon, resilience and vulnerability to its effects are highly local. Many things can be done at the local level to reduce the impact of warm spells, like alerting the public and planning for emergency services. Detailed information about which communities are most at risk from high temperatures can help to inform these strategies."

###

The researchers received funding from the Medical Research Council, Public Health England, and the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre.

For more information please contact:

Franca Davenport
Research Media Officer
Imperial College London
Email: f.davenport@imperial.ac.uk
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248

Notes to editors

1. Reference: J.E. Bennett et al, 'Vulnerability to the mortality effects of warm temperature in England's and Wales' districts.' Nature Climate Change 23 March 2014 doi: 10.1038/NCLIMATE2123.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Website: http://www.imperial.ac.uk

3. About the National Institute for Health Research

The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government's strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. For further information, visit the NIHR website (http://www.nihr.ac.uk).The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

4. About the Medical Research Council

The Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Twenty-nine MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www.mrc.ac.uk

Franca Davenport | EurekAlert!

Further reports about: Climate Health NHS NIHR discoveries mortality temperatures

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>