Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southeast England most at risk of rising deaths due to climate change

24.03.2014

Warmer summers brought on by climate change will cause more deaths in London and southeast England than the rest of the country, scientists predict.

Researchers at Imperial College London looked at temperature records and mortality figures for 2001 to 2010 to find out which districts in England and Wales experience the biggest effects from warm temperatures.

In the most vulnerable districts, in London and the southeast, the odds of dying from cardiovascular or respiratory causes increased by over 10 per cent for every 1C rise in temperature. Districts in the far north were much more resilient, seeing no increase in deaths at equivalent temperatures.

Writing in Nature Climate Change, the researchers say local variations in climate change vulnerability should be taken into account when assessing the risks and choosing policy responses.

... more about:
»Climate »Health »NHS »NIHR »discoveries »mortality »temperatures

Dr James Bennett, the lead author of the study from the MRC-PHE Centre for Environment and Health at Imperial College London, said: "It's well known that warm weather can increase the risk of cardiovascular and respiratory deaths, especially in elderly people. Climate change is expected to raise average temperatures and increase temperature variability, so we can expect it to have effects on mortality even in countries like the UK with a temperate climate."

Across England and Wales as a whole, a summer that is 2C warmer than average would be expected to cause around 1,550 extra deaths, the study found. Just over half would be in people aged over 85, and 62 per cent would be in women. The extra deaths would be distributed unevenly, with 95 out of 376 districts accounting for half of all deaths.

The effects of warm temperature were similar in urban and rural districts. The most vulnerable districts included deprived districts in London such as Hackney and Tower Hamlets, with the odds of dying more than doubling on very hot days like those of August 2003.

"The reasons for the uneven distribution of deaths in warm weather need to be studied," said Professor Majid Ezzati, from the School of Public Health at Imperial, who led the research. "It might be due to more vulnerable individuals being concentrated in some areas, or it might be related to differences at the community level, like quality of healthcare, that require government action.

"We might expect that people in areas that tend to be warmer would be more resilient, because they adapt by installing air conditioning for example. These results show that this isn't the case in England and Wales.

"While climate change is a global phenomenon, resilience and vulnerability to its effects are highly local. Many things can be done at the local level to reduce the impact of warm spells, like alerting the public and planning for emergency services. Detailed information about which communities are most at risk from high temperatures can help to inform these strategies."

###

The researchers received funding from the Medical Research Council, Public Health England, and the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre.

For more information please contact:

Franca Davenport
Research Media Officer
Imperial College London
Email: f.davenport@imperial.ac.uk
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248

Notes to editors

1. Reference: J.E. Bennett et al, 'Vulnerability to the mortality effects of warm temperature in England's and Wales' districts.' Nature Climate Change 23 March 2014 doi: 10.1038/NCLIMATE2123.

2. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

Website: http://www.imperial.ac.uk

3. About the National Institute for Health Research

The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government's strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. For further information, visit the NIHR website (http://www.nihr.ac.uk).The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

4. About the Medical Research Council

The Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Twenty-nine MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www.mrc.ac.uk

Franca Davenport | EurekAlert!

Further reports about: Climate Health NHS NIHR discoveries mortality temperatures

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>