Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the riddle of nature's perfect spring

02.03.2011
Scientists have unravelled the shape of the protein that gives human tissues their elastic properties in what could lead to the development of new synthetic elastic polymers.

University of Manchester researchers, working with colleagues in Australia and the United States, used state-of-the-art techniques to reveal the structure of tropoelastin, the main component of elastin.

Elastin allows tissues in humans and other mammals to stretch, for example when the lungs expand and contract for respiration or when arteries widen and narrow over the course of a billion heart beats.

The study, published in the science journal PNAS (March issue), revealed how evolution has triumphed where engineering has so far failed by generating a molecule with near-perfect elasticity that will last a lifetime.

"All mammals rely on elastin to provide their tissues with the ability to stretch and then return to their original shape," said researcher Dr Clair Baldock, from the University of Manchester's Wellcome Trust Centre for Cell Matrix Research. "This high level of physical performance demanded of elastin vastly exceeds and indeed outlasts all human-made elastics.

"It is the co-ordinated assembly of many tropoelastins into elastin that gives tissues their stretchy properties and this exquisite assembly helps to generate elastic tissues as diverse as artery, lung and skin.

"We discovered that tropoelastin is a curved, spring-like molecule with a 'foot' region to facilitate attachment to cells. Stretching and relaxing experiments showed that the molecule had the extraordinary capacity to extend to eight-times its initial length and can then return to its original shape with no loss of energy, making it a near-perfect spring."

She added: "Elastics are used in applications as diverse as clothing, vehicles, tissue engineering and even space travel, so understanding how the structure of tropoelastin creates its exceptional elastic properties will hopefully enable the development of synthetic 'elastin-like' polymers with potentially wide-ranging applications and benefits."

Initiator and research project leader Tony Weiss, Professor in the School of Molecular Bioscience, The University of Sydney, added: "Tropoelastin is a tiny protein 'nanospring' in the human body. Our bodies assemble these nanosprings to put elasticity into tissues like skin, blood vessels and lung.

"Our finding is the result of more than a decade of international collaboration. Our scientific teamwork spans Australia, the UK, USA and Europe. Tropoelastin's extraordinary capacity to extend to eight-times its initial length and then return to its original shape, with no loss of energy, is nature showing us how to make an ideal nanospring."

Notes for editors:

A copy of the paper, 'Shape of tropoelastin, the highly-extensible protein that controls human tissue elasticity,' is available on request.

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>