Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar wind tans young asteroids

24.04.2009
A new study published in Nature this week reveals that asteroid surfaces age and redden much faster than previously thought — in less than a million years, the blink of an eye for an asteroid.

This study has finally confirmed that the solar wind is the most likely cause of very rapid space weathering in asteroids. This fundamental result will help astronomers relate the appearance of an asteroid to its actual history and identify any after effects of a catastrophic impact with another asteroid.

“Asteroids seem to get a ‘sun tan’ very quickly,” says lead author Pierre Vernazza. “But not, as for people, from an overdose of the Sun’s ultraviolet radiation, but from the effects of its powerful wind.”

It has long been known that asteroid surfaces alter in appearance with time — the observed asteroids are much redder than the interior of meteorites found on Earth [1] — but the actual processes of this “space weathering” and the timescales involved were controversial.

Thanks to observations of different families of asteroids [2] using ESO’s New Technology Telescope at La Silla and the Very Large Telescope at Paranal, as well as telescopes in Spain and Hawaii, Vernazza’s team have now solved the puzzle.

When two asteroids collide, they create a family of fragments with “fresh” surfaces. The astronomers found that these newly exposed surfaces are quickly altered and change colour in less than a million years — a very short time compared to the age of the Solar System.

“The charged, fast moving particles in the solar wind damage the asteroid’s surface at an amazing rate [3]”, says Vernazza. Unlike human skin, which is damaged and aged by repeated overexposure to sunlight, it is, perhaps rather surprisingly, the first moments of exposure (on the timescale considered) — the first million years — that causes most of the aging in asteroids.

By studying different families of asteroids, the team has also shown that an asteroid’s surface composition is an important factor in how red its surface can become. After the first million years, the surface “tans” much more slowly. At that stage, the colour depends more on composition than on age. Moreover, the observations reveal that collisions cannot be the main mechanism behind the high proportion of “fresh” surfaces seen among near-Earth asteroids. Instead, these “fresh-looking” surfaces may be the results of planetary encounters, where the tug of a planet has “shaken” the asteroid, exposing unaltered material.

Thanks to these results, astronomers will now be able to understand better how the surface of an asteroid — which often is the only thing we can observe — reflects its history.

More information
This result was presented in a paper published this week in the journal Nature, “Solar wind as the origin of rapid reddening of asteroid surfaces”, by P. Vernazza et al. The team is composed of Pierre Vernazza (ESA), Richard Binzel (MIT, Cambridge, USA), Alessandro Rossi (ISTI-CNR, Pisa, Italy), Marcello Fulchignoni (Paris Observatory, France), and Mirel Birlan (IMCCE, CNRS-8028, Paris Observatory, France). A PDF file can be downloaded here.

Notes

[1] Meteorites are small fragments of asteroids that fall on Earth. While a meteorite enters the Earth's atmosphere its surface can melt and be partially charred by the intense heat. Nevertheless, the meteorite interior remains unaffected, and can be studied in a laboratory, providing a wealth of information on the nature and composition of asteroids.

[2] An asteroid family is a group of asteroids that are on similar orbits around the Sun. The members of a given family are believed to be the fragments of a larger asteroid that was destroyed during a collision.

[3] The surface of an asteroid is affected by the highly energetic particles forming the solar wind. These particles partially destroy the molecules and crystals on the surface, re-arranging them in other combinations. Over time, these changes give formation of a thin crust or irradiated material with distinct colours and properties.

Contacts
Pierre Vernazza
European Space Agency, Noordwijk, Netherlands
Tel: +31 71 565 3154
E-mail: pierre.vernazza (at) esa.int

Dr. Henri Boffin | EurekAlert!
Further information:
http://www.eso.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>