Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social isolation makes strokes more deadly

25.03.2009
New research in mice suggests that social isolation may promote more damaging inflammation in the brain during a stroke.

Researchers at Ohio State University found that all the male mice that lived with a female partner survived seven days after a stroke, but only 40 percent of socially isolated animals lived that long.

In addition, the paired mice suffered much less brain damage than did the surviving solitary mice.

"Under nearly every measure, it seems that there was something about living together that protected the mice by reducing the damaging inflammatory response," said Kate Karelina, lead author of the study and a doctoral student in neuroscience at Ohio State University.

In a series of experiments, Karelina and her colleagues induced experimental strokes in male mice. Some of the mice lived with a female partner for two weeks before the stroke and continuing afterwards. Other mice lived alone before and after the stroke. A control group of mice underwent similar surgery in the brain, but did not have an induced stroke.

The research is scheduled to appear this week in the online early edition of the Proceedings of the National Academy of Sciences.

The reasons for the higher survival rate for the socially housed mice were evident when the researchers compared brain tissues of mice after the stroke.

The researchers examined tissue samples in different groups of mice 12 hours, one day, three days or seven days after the stroke to determine the extent of damage.

"We confirmed that that social isolation contributes to the extent of neuronal damage in the brain as early as 24 hours after the stroke," said Courtney DeVries, associate professor of psychology and neuroscience at Ohio State, and a member of the university's Institute of Behavioral Medicine Research.

The amount of tissue damage in the brain was about four times larger in the mice housed alone compared to those housed with another mouse.

"The number of neurons dying is significantly decreased in the pair-housed mice," DeVries said.

In addition, socially housed mice had significantly less edema, or excess water in the brain, when compared to the isolated animals.

"In clinical stroke, edema is a major concern because it can lead to additional neuronal damage, so it is significant that pair housing reduced edema," Karelina said.

The study showed that two genes associated with damaging inflammation in the brain – MAC-1 and glial fibrillary acidic protein, or GFAP – showed decreased activation in the socially housed mice.

In addition, findings revealed that mice that lived with others had significantly higher levels of a cytokine in their brain called interleukin-6 (IL-6) that has an anti-inflammatory response in the brain, helping to limit damage caused by the stroke.

The finding about IL-6 is especially interesting, Karelina said, because IL-6 appears to have opposite effects in the brain than it does in the rest of the body.

"IL-6 reduces inflammation in the brain, so it is protective in a stroke, but it is a pro-inflammatory in the periphery of the body," Karelina said.

One practical result of this finding, DeVries said, is to caution researchers as they look for ways to limit damaging inflammation in the body.

For example, if drug developers wanted to develop a medicine to reduce levels of IL-6 in the body in order to minimize its pro-inflammatory response, they would have to take into account that IL-6 actually protects the brain by reducing inflammation there.

Overall, the study provides some early clues as to how social support may protect people who suffer strokes.

"We're learning more about what it is about social support that helps stroke victims have more positive outcomes," Karelina said.

Other co-authors on the study, all from Ohio State, were Greg Norman, a psychology graduate student; Ning Zhang, research associate in psychology; John Morris, a graduate student in psychology; and Haiyan Peng, a graduate student in neuroscience.

The work was supported by grants from the American Heart Association, the National Institute of Neurological Disorders and Stroke and the National Heart, Lung, and Blood Institute.

Contact: Kate Karelina, (614) 688-4665; Karelina.1@osu.edu
Courtney DeVries, (614) 292-7353; DeVries.14@osu.edu
Written by Jeff Grabmeier, (614) 292-8457; Grabmeier.1@osu.edu

Kate Karelina | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>