Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snow in the Arctic: an ingredient in a surprising chemical cocktail

10.11.2008
In the Arctic in spring, the snow cover gives off nitrogen oxides. This phenomenon, the extent of which had not been previously realized, is the source of one third of the nitrates present in the Arctic atmosphere, according to researchers from CNRS, the Université Joseph Fourier and the Université Pierre et Marie Curie[1].

They made a quantitative study of the origin and evolution of nitrogen compounds in the Arctic atmosphere, in order to understand their environmental impact on this region. These findings are published in the 31 October 2008 issue of the journal Science.

In the Arctic, the snow that covers the land mass and the pack ice is a constant source of new surprises for researchers. One of the major players in climate change, it is also closely monitored by atmospheric chemists, who suspect it of being behind fundamental alterations in atmospheric composition in spring, when sunshine returns.

The researchers had already studied episodes of total destruction of ozone at the surface of the Arctic snow cover [2] as well as the role played by this cover in the dangerous mercury 'rain' that pollutes ecosystems [3]. This time they were interested in the ability of the arctic snow cover to interact with nitrogen compounds such as nitrogen oxides and atmospheric nitrate.

At temperate latitudes nitrogen oxides are produced not only by natural phenomena such as lightning and forest fires, but also by human activity, such as combustion in engines and industrial activity. They are the cause of the peaks in ozone concentration observed on the outskirts of cities during episodes of high pollution. Nitrogen oxides are rapidly oxidized to nitrate, which, incorporated into atmospheric particulate matter, is transported by air currents, bringing surplus nitrogen to distant ecosystems.

In the Arctic, in autumn, winter and spring, the nitrate is deposited onto the snow cover. Then, when the snow is exposed to solar radiation, the nitrate turns into nitrogen oxides that are emitted to the atmosphere, causing disturbances in Arctic atmospheric chemistry. However, the extent of this phenomenon remained to be quantified.

By measuring the isotopic composition of the nitrogen and oxygen in the atmospheric nitrate collected in the Canadian Arctic (Alert station, Nunavut)[4], the researchers have shown that the 'recycling' of nitrate deposited on the snow of the Arctic pack ice returns nitrogen oxides to the atmosphere in substantial quantities. For instance, in spring, nearly one third of the Arctic atmospheric nitrate comes from emissions of nitrogen oxides from the snow cover, while the rest comes directly from atmospheric transport from middle latitudes. The researchers also show that there are strong chemical interactions between the nitrogen oxides emitted by the snow cover and the halogenated compounds (in particular BrO radicals) that are involved in the phenomena of ozone destruction in the lower levels of the atmosphere in spring.

This study highlights the close links between the climate system (ice surfaces, snow-covered surfaces, temperatures, and percentage of solar radiation reaching the Earth's surface) and the presence of highly reactive pollutants in the Arctic atmosphere (nitrogen oxides, ozone, and particulate matter emitted by human activity). It shows the need for a global approach to environmental problems, calling for long-term monitoring and the use of new techniques for analyzing processes.

The work was funded by CNRS's National Institute of Earth Sciences and Astronomy (INSU), the Institut Polaire - Paul Émile Victor (IPEV) and by a European Science Foundation program (EUROCORE-EuroCLIMATE).

[1] Laboratoire de glaciologie et de géologie de l’environnement (CNRS/Université Joseph Fourier), Laboratoire d’étude des transferts en hydrologie et environnement (CNRS/Université Joseph Fourier/Institut polytechnique de Grenoble), Service d'aéronomie (CNRS/Université Pierre et Marie Curie/Université Versailles Saint Quentin)

[2] http://www.insu.cnrs.fr/a2131,nouvelle-loupe-isotopique-chimie-ozone-arctique.html

[3] http://www2.cnrs.fr/presse/journal/1416.htm

[4] by the Meteorological Service of Canada ( Global Atmospheric Watch program, coordinated by the World Meteorological Organization).

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr
http://www.upmc.fr

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>