Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snooze you win? It's true for achieving hoop dreams, says Stanford study

01.07.2011
Young basketball players spend hours dribbling up and down the court aspiring to NBA stardom. Now, new Stanford University School of Medicine research suggests another tactic to achieving their hoop dreams: sleep.

In a study appearing in the July issue of SLEEP, Cheri Mah, a researcher in the Stanford Sleep Disorders Clinic and Research Laboratory, has shown that basketball players at the elite college level were able to improve their on-the-court performance by increasing their amount of total sleep time.

The study suggests that "sleep is an important factor in peak athletic performance," said first author Mah. In the paper, she and colleagues wrote that "athletes may be able to optimize training and competition outcomes by identifying strategies to maximize the benefits of sleep."

It's no secret that lack of sleep can have negative consequences. Extensive research has shown the impact that sleep debt has on cognitive function, mood and physical performance. But, as Mah and her colleagues point out in the paper, very few studies have looked at the opposite: the effect that sleep extension can have on performance. And few other groups have looked specifically at the effect of sleep on athletes.

While things such as nutrition and physical training are part of an athlete's daily regimen, Mah said competitive athletes at all levels typically do not focus on optimizing their sleep and recovery. They are usually just told to get a "good night's sleep" before a competition.

"Intuitively many players and coaches know that rest and sleep are important, but it is often the first to be sacrificed," she added. "Healthy and adequate sleep hasn't had the same focus as other areas of training for peak performance."

In 2002, Mah conducted a study on sleep extension and cognitive function in Stanford undergraduate students. By chance, several participants were collegiate swimmers and mentioned that they had beaten personal swim records during the portion of the study in which they slept more than normal. A light bulb went off in Mah's head. "We had been investigating the effects of sleep extension on cognitive performance and mood, but I was now curious if sleep extension may also impact physical performance," she said.

Mah began working with sleep expert William Dement, MD, PhD, professor of psychiatry and behavioral sciences, and they turned their attention to the men's basketball team. Over the course of two basketball seasons, Mah and colleagues worked with 11 healthy players with a goal of investigating the effects of sleep extension on specific measures of athletic performance, as well as reaction time, mood and daytime sleepiness.

The researchers asked the players to maintain their normal nighttime schedule (sleeping for six to nine hours) for two to four weeks and then aim to sleep 10 hours each night for the next five to seven weeks. During the study period, players abstained from drinking coffee and alcohol, and they were asked to take daytime naps when travel prohibited them from reaching the 10 hours of nighttime sleep.

At the end of the sleep extension period, the players ran faster 282-foot sprints (16.2 seconds versus 15.5 seconds) than they had at baseline. Shooting accuracy during practice also improved: Free throw percentages increased by 9 percent and 3-point field goal percentage increased by 9.2 percent. Fatigue levels decreased following sleep extension, and athletes reported improved practices and games.

Using a questionnaire-based sleepiness scale at the beginning of the study, Mah and her colleagues also discovered that many of the athletes had a moderate-to-high baseline level of daytime sleepiness — indicating that they were carrying sleep debt accumulated from chronic sleep loss. She called this one of the most surprising aspect of the study.

"The athletes were training and competing during their regular season with moderate-to-high levels of daytime sleepiness and were unaware that it could be negatively impacting their performance," she said. "But as the season wore on and they reduced their sleep debt, many athletes testified that a focus on sleep was beneficial to their training and performance."

The findings suggest, Mah said, that it's important for sleep to be prioritized over a long period of time, not just the night before "Game Day." She called optimal sleep an "unrecognized, but likely critical factor in reaching peak performance." She said the findings may be applicable to recreational athletes and those at the high school, semi-pro or professional level.

Mah and her co-authors noted several limitations to their study. The sample size was small and the players' travel schedule made maintaining a strict sleep-wake schedule difficult. (Mah noted, though, that this was an unusual opportunity to study actively competing elite athletes.) It's important to note, also, that the study didn't focus on in-game performance: The team aspect of basketball makes it tricky to do so, she said, but future studies could focus on swimming, track and field, or other sports more conducive to examining individual performance.

Mah has already laid the groundwork for this research. Over the last several years she has investigated sleep extension in other Stanford sports teams including football, tennis, and swimming. She has presented abstracts with preliminary findings on these sports that suggest a similar trend: More sleep led to better performance.

Mah now works with many of the Stanford sports teams and coaches to integrate optimal sleep and travel scheduling into their seasons and also consults with professional hockey, football and basketball teams, in addition to continuing her research. She hopes to next turn her attention to the quality, versus quantity, of athletes' sleep.

Dement was the senior author of the study. Kenneth Mah, MD, a pediatric cardiovascular ICU hospitalist at Lucile Packard Children's Hospital, was also involved in the research. The work was funded by the Stanford Sleep Disorders Clinic and Research Laboratory.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Michelle Brandt | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>