Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoking influences gene function

14.07.2010
Negative influence found on the immune system, strong involvement in processes related to cancer, cell death and metabolism

In the largest study of its kind, researchers at the Southwest Foundation for Biomedical Research (SFBR) have found that exposure to cigarette smoke can alter gene expression -- the process by which a gene's information is converted into the structures and functions of a cell. These alterations in response to smoking appear to have a wide-ranging negative influence on the immune system, and a strong involvement in processes related to cancer, cell death and metabolism.

The scientists indentified 323 unique genes whose expression levels were significantly correlated with smoking behavior in their study of 1,240 people. The changes were detected by studying the activity of genes within white blood cells of study participants.

"Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking," wrote lead author Jac Charlesworth, Ph.D., in the July 15 issue of the open access journal BMC Medical Genomics. Charlesworth, formerly at SFBR, is now a research fellow at the Menzies Research Institute at the University of Tasmania in Australia.

The study was funded by the National Institutes of Health and the Azar and Shepperd families of San Antonio, ChemGenex Pharmaceuticals and the AT&T Foundation. The study is part of SFBR's San Antonio Family Heart Study (SAFHS) which includes 40 families in the Mexican American community.

"Previous studies of gene expression as influenced by smoking have been seriously limited in size with the largest of the in vivo studies including only 42 smokers and 43 non-smokers. We studied 1,240 individuals, including 297 current smokers" Charlesworth said. "Never before has such a clear link between smoking and transcriptomics been revealed, and the scale at which exposure to cigarette smoke appears to influence the expression levels of our genes is sobering".

"Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking. It is likely that this observed effect of smoking on transcription has larger implications for human disease risk, especially in relation to the increased risk of a wide variety of cancers throughout the body as a result of cigarette smoke exposure," Charlesworth said.

All of Charlesworth's ten co-authors on this paper are doctoral level faculty and staff in SFBR's Department of Genetics and members of the group of investigators working on the SAFHS lead by Principal Investigator John Blangero, Ph.D.

Charlesworth can be reached in Australia after 6 pm CT at 613-6226 -4607, or at Jac.Charlesworth@utas.edu.au. Co-authors, Joanne E. Curran, Ph.D., or Michael Mahaney, Ph.D., of SFBR are also available for interviews. They can be reached through Joe Carey, SFBR's Vice President for Public Affairs at 210-258-9437.

SFBR is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, SFBR partners with hundreds of researchers and institutions around the world, targeting advances in the fight against cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases. For more information on SFBR, go to www.sfbr.org.

Joseph Carey | EurekAlert!
Further information:
http://www.sfbr.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>