Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoking influences gene function

14.07.2010
Negative influence found on the immune system, strong involvement in processes related to cancer, cell death and metabolism

In the largest study of its kind, researchers at the Southwest Foundation for Biomedical Research (SFBR) have found that exposure to cigarette smoke can alter gene expression -- the process by which a gene's information is converted into the structures and functions of a cell. These alterations in response to smoking appear to have a wide-ranging negative influence on the immune system, and a strong involvement in processes related to cancer, cell death and metabolism.

The scientists indentified 323 unique genes whose expression levels were significantly correlated with smoking behavior in their study of 1,240 people. The changes were detected by studying the activity of genes within white blood cells of study participants.

"Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking," wrote lead author Jac Charlesworth, Ph.D., in the July 15 issue of the open access journal BMC Medical Genomics. Charlesworth, formerly at SFBR, is now a research fellow at the Menzies Research Institute at the University of Tasmania in Australia.

The study was funded by the National Institutes of Health and the Azar and Shepperd families of San Antonio, ChemGenex Pharmaceuticals and the AT&T Foundation. The study is part of SFBR's San Antonio Family Heart Study (SAFHS) which includes 40 families in the Mexican American community.

"Previous studies of gene expression as influenced by smoking have been seriously limited in size with the largest of the in vivo studies including only 42 smokers and 43 non-smokers. We studied 1,240 individuals, including 297 current smokers" Charlesworth said. "Never before has such a clear link between smoking and transcriptomics been revealed, and the scale at which exposure to cigarette smoke appears to influence the expression levels of our genes is sobering".

"Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking. It is likely that this observed effect of smoking on transcription has larger implications for human disease risk, especially in relation to the increased risk of a wide variety of cancers throughout the body as a result of cigarette smoke exposure," Charlesworth said.

All of Charlesworth's ten co-authors on this paper are doctoral level faculty and staff in SFBR's Department of Genetics and members of the group of investigators working on the SAFHS lead by Principal Investigator John Blangero, Ph.D.

Charlesworth can be reached in Australia after 6 pm CT at 613-6226 -4607, or at Jac.Charlesworth@utas.edu.au. Co-authors, Joanne E. Curran, Ph.D., or Michael Mahaney, Ph.D., of SFBR are also available for interviews. They can be reached through Joe Carey, SFBR's Vice President for Public Affairs at 210-258-9437.

SFBR is one of the world's leading independent biomedical research institutions dedicated to advancing health worldwide through innovative biomedical research. Located on a 200-acre campus on the northwest side of San Antonio, Texas, SFBR partners with hundreds of researchers and institutions around the world, targeting advances in the fight against cardiovascular disease, diabetes, obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections and a host of other infectious diseases. For more information on SFBR, go to www.sfbr.org.

Joseph Carey | EurekAlert!
Further information:
http://www.sfbr.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>