Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smithsonian experts find e-readers can make reading easier for those with dyslexia

19.09.2013
As e-readers grow in popularity as convenient alternatives to traditional books, researchers at the Smithsonian have found that convenience may not be their only benefit.

The team discovered that when e-readers are set up to display only a few words per line, some people with dyslexia can read more easily, quickly and with greater comprehension. Their findings are published in the Sept. 18 issue of the journal PLOS ONE.

An element in many cases of dyslexia is called a visual attention deficit. It is marked by an inability to concentrate on letters within words or words within lines of text. Another element is known as visual crowding--the failure to recognize letters when they are cluttered within the word. Using short lines on an e-reader can alieviate these issues and promote reading by reducing visual distractions within the text.

"At least a third of those with dyslexia we tested have these issues with visual attention and are helped by reading on the e-reader," said Matthew H. Schneps, director of the Laboratory for Visual Learning at the Smithsonian Astrophysical Observatory and lead author of the research. "For those who don't have these issues, the study showed that the traditional ways of displaying text are better."

An earlier study by Schneps tracked eye movements of dyslexic students while they read, and it showed the use of short lines facilitated reading by improving the efficiency of the eye movements. This second study examined the role the small hand-held reader had on comprehension, and found that in many cases the device not only improved speed and efficiency, but improved abilities for the dyslexic reader to grasp the meaning of the text.

The team tested the reading comprehension and speed of 103 students with dyslexia who attend Landmark High School in Boston. Reading on paper was compared with reading on small hand-held e-reader devices, configured to lines of text that were two-to-three words long. The use of an e-reader significantly improved speed and comprehension in many of the students. Those students with a pronounced visual attention deficit benefited most from reading text on a handheld device versus on paper, while the reverse was true for those who did not exhibit these issues. The small screen on a handheld device displaying few words (versus a full sheet of paper) is believed to narrow and concentrate the reader's focus, which controls visual distraction.

"The high school students we tested at Landmark had the benefit of many years of exceptional remediation, but even so, if they have visual attention deficits they will eventually hit a plateau, and traditional approaches can no longer help," said Schneps. "Our research showed that the e-readers help these students reach beyond those limits."

These findings suggest that this reading method can be an effective intervention for struggling readers and that e-readers may be more than new technological gadgets: They also may be educational resources and solutions for those with dyslexia.

The study was funded by the National Science Foundation. The journal article is openly accessible and can be downloaded at http://dx.plos.org/10.1371/journal.pone.007563. The previously published study is available at http://dx.plos.org/10.1371/journal.pone.0071161.

To guide teachers, parents, and others in how to use e-readers to help students who struggle with reading, the Smithsonian Institution, with funding from the Youth Access Grant program, has created a free online resource explaining how to configure the devices, and certify reading specialists in their use. This resource is accessible at http://readeasy.si.edu.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>