Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are Smartphones Disrupting Your Sleep? Mayo Clinic Study Examines the Question

04.06.2013
Research suggests lowering light setting, holding phone several inches from face help in-bed use

Smartphones and tablets can make for sleep-disrupting bedfellows. One cause is believed to be the bright light-emitting diodes that allow the use of mobile devices in dimly lit rooms; the light exposure can interfere with melatonin, a hormone that helps control the natural sleep-wake cycle.

But there may be a way to check your mobile device in bed and still get a good night's sleep. A Mayo Clinic study suggests dimming the smartphone or tablet brightness settings and holding the device at least 14 inches from your face while using it will reduce its potential to interfere with melatonin and impede sleep.

The research was among Mayo Clinic studies being presented at SLEEP 2013, the Associated Professional Sleep Societies annual meeting in Baltimore.

"In the old days people would go to bed and read a book. Well, much more commonly people go to bed and they have their tablet on which they read a book or they read a newspaper or they're looking at material. The problem is it's a lit device, and how problematic is the light source from the mobile device?" says co-author Lois Krahn, M.D., a psychiatrist and sleep expert at Mayo Clinic in Scottsdale, Ariz.

"There's a lot of concern about using mobile devices and that prompted me to wonder, are they always a negative factor for sleep?" Dr. Krahn says. "We found that only at the highest setting was the light over a conservative threshold that might affect melatonin levels. If it's at the mid setting or at a low setting it's bright enough to use."

In the study, researchers experimented with two tablets and a smartphone in a dark room, using a meter on its most sensitive setting to measure the light the devices emitted at various settings when held various distances from a person's face. They discovered that when brightness settings were lowered and the devices were held just over a foot from a user's face, it reduced the risk that the light would be bright enough to suppress melatonin secretion and disrupt sleep.

Other Mayo research presented at the conference includes the finding that some sleep apnea patients may not need annual follow-up visits. Patients with obstructive sleep apnea being treated with positive airway pressure are less likely to need a yearly check-up.

The researchers suggest developing a screening tool to assess which of these patients need annual follow-up visits.

Limiting annual visits to the obstructive sleep apnea patients who truly need them will reduce resource use and improve quality of care and patient satisfaction, says co-author Kannan Ramar, MBBS, M.D., a pulmonary and critical care physician with the Mayo Clinic Center for Sleep Medicine in Rochester, Minn.

For interviews with Dr. Krahn, Dr. Ramar and other Mayo Clinic sleep experts, please contact Sharon Theimer in Mayo Clinic Public Affairs at 507-284-5005 or newsbureau@mayo.edu.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Sharon Theimer | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>