Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why (Smart) Practice Makes Perfect

14.07.2010
Struggling with your chip shot? Constant drills with your wedge may not help much, but mixing in longer drives will, and a new study shows why.

Previous studies have shown that variable practice improves the brain’s memory of most skills better than practice focused on a single task. Cognitive neuroscientists at USC and UCLA describe the neural basis for this paradox in a new study in Nature Neuroscience.

The researchers split 59 volunteers into six groups: three groups were asked to practice a challenging arm movement, while the other three groups practiced the movement and related tasks in a variable practice structure.

Volunteers in the variable practice group showed better retention of the skill. The process of consolidating memory of the skill engaged a part of the brain – the prefrontal cortex – associated with higher level planning.

The group assigned to constant practice of the arm movement retained the skill to a lesser degree through consolidation that engaged a part of the brain – the primary motor cortex – associated with simple motor learning.

“In the variable practice structure condition, you’re basically solving the motor problem anew each time. If I’m just repeating the same thing over and over again as in the constant practice condition, I don’t have to process it very deeply,” said study senior author Carolee Winstein, professor of biokinesiology and physical therapy at USC.

“We gravitate toward a simple, rote practice structure because we’re basically lazy, and we don’t want to work hard. But it turns out that memory is enhanced when we engage in practice that is more challenging and requires us to reconstruct the activity,” Winstein said.

Winstein’s team, led by Shailesh Kantak, a graduate student in biokinesiology at the time of the study, verified the neural circuits involved through harmless magnetic interference applied immediately after practice.

Volunteers in the variable practice group who received magnetic stimulation in the prefrontal cortex failed to retain or “consolidate” the arm movement as well as those in the same group who did not receive magnetic stimulation.

This implied that the prefrontal cortex was necessary for consolidating the memory.

Likewise, constant practice volunteers who received magnetic stimulation in the primary motor cortex failed to retain the arm movement as well as volunteers in the same group who did not receive magnetic stimulation.

“While it may be harder during practice to switch between tasks … you end up remembering the tasks better later than you do if you engage in this drill-like practice,” Winstein said.

“In motor skills training they know this, in educational programs where they’re teaching the kids cursive hand writing, they know this.”

Winstein described the study as “the linking of motor neuroscience to behavioral movement science to better understand the neural substrates that mediate motor learning through optimal practice structures. No one had done this before in this way.”

The magnetic interference tests also helped define the time window for the brain to consolidate skills. For volunteers chosen to receive interference four hours after practice, the procedure had no effect on learning. This suggested the brain already had done its consolidation.

Winstein’s team included first author Kantak, a recent USC Ph.D. graduate on his way to a postdoctoral position at the Rehabilitation Institute of Chicago; fellow biokinesiology faculty Katherine Sullivan (primary adviser to Kantak) and Beth Fisher, director of the Neuroplasticity and Imaging Laboratory where the study was conducted; and Barbara Knowlton, professor of behavioral neuroscience at UCLA.

The study was funded by a grant from the North American Society for the Psychology of Sport and Physical Activity and an Oakley Fellowship from the Graduate School of USC to Kantak.

Journalists may obtain the study from USC Media Relations.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>