Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Changes Could Save Structures, Lives During Tornadoes

05.05.2014

Surviving a tornado in a wood-frame residential home is enhanced by an intact roof and standing walls, but light-weight garage doors can be the weak link to allowing high winds and pressure changes into a home that can lead to the removal of the roof and collapsed walls, according to a study of damage left behind by a powerful tornado in Moore, Oklahoma, in 2013 by researchers from The University of Alabama and other institutions.

“Once the roof over the garage is blown off, there usually is a significant hole into the main portion of the house,” said Dr. Andrew J. Graettinger, associate professor of civil, construction and environmental engineering and lead author of a report by a team of researchers.

Researchers from six institutions traveled to Moore at the end of May 2013 as part of the National Science Foundation Rapid Response Grant for Exploratory Research awarded to UA to investigate and gather data about the damage to, and performance of, woodframe structures in the affected areas due to strong winds.

As part of the grant, the research team also studied whether social media and engineering can combine to influence future building practice. Other NSF grants funded work by researchers at three other institutions, and their work is included in the final report.

“We need to consider the building components that are the starting points for damage that lead to loss of life, injuries and economic loss during a tornado,” Graettinger said. “If we engineer for these weak areas, we can start keeping these buildings together during all but the strongest winds a tornado can produce.”

Besides the findings on garage doors, the team found more use of residential shelters in Moore than found in similar studies in Tuscaloosa and Joplin, Missouri, after strong tornadoes hit both cities in 2011. This is likely because the tornado in Moore a year ago was the third major tornado to strike the city since 1999. The conclusion of the study is simple: below-ground storm shelters and above-ground safe rooms protect against the worst storms and save lives.

“They all performed very well,” Graettinger said of the shelters observed in Moore. “That’s important because while progress is made toward crafting building codes to protect against smaller tornadoes, in large storms or when retrofitting existing homes, a safe room is the best option to save lives.”

The EF 5 tornado that struck Moore May 20, 2013, created a 17-mile long damage swath destroying more than 12,000 buildings mostly in residential and light commercial areas. More than 350 people were injured, and 24 people died as a result of the tornado. The total economic loss from this single event was estimated at $3 billion.

Several members of the team worked together in 2011 to study damage left in the wake of massive tornadoes in Tuscaloosa and Joplin. The researcher’s goal after all three events is to better understand the forces generated by large tornadoes and the distribution of wind force across a tornado’s path, as well as make recommendations for design code improvements and general safety guidelines.

From the data collected in 2011, the researchers concluded that light-frame wood structures will not be able to withstand a direct hit from the forces of powerful EF4 or EF5 tornadoes which produce winds stronger than 166 mph. However, based off the three studies, it’s estimated 85 percent of the damage area left behind by an EF4 or EF5 tornado experience winds from EF0-EF2 tornadoes, or winds less than 135 mph.

These areas on the edges of those systems could see dramatic improvements in safety and overall structure through better engineering design and construction practices. The study of the tornadoes in 2011 concluded that applying techniques to build homes against hurricanes is probably the easiest, low-cost solution to strengthening homes against lower-windspeed tornadoes, and safe rooms and shelters are needed to save lives for those in the center of a tornado.

The study of the tornado in Moore reinforced that conclusion, and it vindicates recent research methods of tornadoes in laboratories and numerical analysis. It also led to further investigation of garage doors, especially on garages that extend from the house. In the areas with lower wind speeds, the root for failure of residential structures was often the garage, according to the Moore damage assessments.

When the garage door is breached during a tornado, it typically leads to pressurization of the garage, subsequent loss of roof over the garage and collapse of the garage walls. The biggest difference between the damage assessments in Moore with those in Tuscaloosa and Joplin was the prevalence of storm shelters. In 2011, shelters were not commonly observed by the research team in Tuscaloosa or Joplin.

At the time of the tornado in 2013, the city of Moore had 3,236 registered residential shelters, an estimated 16 percent of housing units in Moore based of 2010 U.S. Census data. In the damage area, researchers examined 75 residential shelters. Of the 75 shelters observed in Moore, 68 were below ground, and all served their purpose, often times with neighbors of the home with the shelter, the team observed. Only one of the 75 shelters, an above-ground safe room, was penetrated by high-flying debris, a result of errors in building the safe room, the team concluded.

During the research in Moore, social media was used to identify locations to survey damage. It was a novel approach that helped locate the best places to study structural damage, said Dr. Laura Myers, senior research social scientist at The Center for Advanced Public Safety at UA.

“Not only does this assist with the research process, but it also helps establish a community network for storm damage recovery,” Myers said. “Once recovery begins, this community network becomes integral in documenting what the infrastructure strengths were, such as storm shelters, and what needs to change, such as better building codes, to help the rebuilding process.”

The team consists of the following researchers:

- Dr. Andrew Graettinger, principal investigator of the project and associate professor of civil, construction and environmental engineering at The University of Alabama
- Dr. Thang Dao, assistant professor of civil, construction and environmental engineering at UA
- Dr. Jim Richardson, associate professor of civil, construction and environmental engineering at UA
- Dr. Laura Myers, senior research social scientist at The Center for Advanced Public Safety at UA
- Dr. David O. Prevatt, assistant professor of civil and coastal engineering at the University of Florida
- Dr. Rakesh Gupta, professor of wood science and engineering at Oregon State University
- Dr. Arthur G. Cosby, the William L. Giles Distinguished Professor and director of the Social Science Research Center at Mississippi State University
- Dr. Robert Emerson, associate professor of structural engineering at Oklahoma State University
- Dr. Fred Haan, associate professor of mechanical engineering at Rose-Hulman Institute of Technology

Several students were also part of the research team including an undergraduate and three graduate students from UA.

To view the full report along with an interactive map of the damage assessment, visit http://esridev.caps.ua.edu/mooretornado/mooretornado.html.

Adam Jones, University of Alabama engineering public relations, 205/348-6444, acjones12@eng.ua.edu

Adam Jones | newswise
Further information:
http://www.ua.edu

Further reports about: Alabama Myers Tuscaloosa construction damage improvements storms structures tornadoes winds

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>